Le Monde puzzle [#1063]

August 8, 2018
By

[This article was first published on R – Xi'an's Og, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

lemondapariA simple (summertime?!) arithmetic Le Monde mathematical puzzle

  1. A “powerful integer” is such that all its prime divisors are at least with multiplicity 2. Are there two powerful integers in a row, i.e. such that both n and n+1 are powerful?
  2.  Are there odd integers n such that n² – 1 is a powerful integer ?

The first question can be solved by brute force.  Here is a R code that leads to the solution:

isperfz <- function(n){ 
  divz=primeFactors(n) 
  facz=unique(divz) 
  ordz=rep(0,length(facz)) 
  for (i in 1:length(facz)) 
    ordz[i]=sum(divz==facz[i]) 
  return(min(ordz)>1)}

lesperf=NULL
for (t in 4:1e5)
if (isperfz(t)) lesperf=c(lesperf,t)
twinz=lesperf[diff(lesperf)==1]

with solutions 8, 288, 675, 9800, 12167.

The second puzzle means rerunning the code only on integers n²-1…

[1] 8
[1] 288
[1] 675
[1] 9800
[1] 235224
[1] 332928
[1] 1825200
[1] 11309768

except that I cannot exceed n²=10⁸. (The Le Monde puzzles will now stop for a month, just like about everything in France!, and then a new challenge will take place. Stay tuned.)

To leave a comment for the author, please follow the link and comment on their blog: R – Xi'an's Og.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Search R-bloggers

Sponsors

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)