Explain! Explain! Explain!

December 3, 2017
By

(This article was first published on SmarterPoland.pl » English, and kindly contributed to R-bloggers)


Predictive modeling is fun. With random forest, xgboost, lightgbm and other elastic models…
Problems start when someone is asking how predictions are calculated.
Well, some black boxes are hard to explain.
And this is why we need good explainers.

In the June Aleksandra Paluszynska defended her master thesis Structure mining and knowledge extraction from random forest. Find the corresponding package randomForestExplainer and its vignette here.

In the September David Foster published a very interesting package xgboostExplainer. Try it to extract useful information from a xgboost model and create waterfall plots that explain variable contributions in predictions. Read more about this package here.

In the October Albert Cheng published lightgbmExplainer. Package with waterfall plots implemented for lightGBM models. Its usage is very similar to the xgboostExplainer package.

Waterfall plots that explain single predictions are great. They are useful also for linear models. So if you are working with lm() or glm() try the brand new breakDown package (hmm, maybe it should be named glmExplainer). It creates graphical explanations for predictions and has such a nice cheatsheet:

breakDownCheatsheet

Install the package from https://pbiecek.github.io/breakDown/.

Thanks to RStudio for the cheatsheet’s template.

To leave a comment for the author, please follow the link and comment on their blog: SmarterPoland.pl » English.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Search R-bloggers

Sponsors

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)