# dynamic mixtures [at NBBC15]

**Xi'an's Og » R**, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)

Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

**A** funny coincidence: as I was sitting next to Arnoldo Frigessi at the NBBC15 conference, I came upon a new question on Cross Validated about a dynamic mixture model he had developed in 2002 with Olga Haug and Håvård Rue [whom I also saw last week in Valencià]. The dynamic mixture model they proposed replaces the standard weights in the mixture with cumulative distribution functions, hence the term *dynamic*. Here is the version used in their paper

where f is a Weibull density, g a generalised Pareto density, and w is the cdf of a Cauchy distribution [all distributions being endowed with standard parameters]. While the above object is *not* a mixture of a generalised Pareto and of a Weibull distributions (instead, it is a mixture of two non-standard distributions with unknown weights), it is close to the Weibull when x is near zero and ends up with the Pareto tail (when x is large). The question was about simulating from this distribution and, while an answer was in the paper, I replied on Cross Validated with an alternative accept-reject proposal and with a somewhat (if mildly) non-standard MCMC implementation enjoying a much higher acceptance rate and the same fit.

Filed under: R, Statistics Tagged: Arnoldo Frigessi, component of a mixture, cross validated, dynamic mixture, extremes, Havard Rue, NBBC15 conference, O-Bayes 2015, Pareto distribution, R, Reykjavik, Valencia conferences, Weibull distribution

**leave a comment**for the author, please follow the link and comment on their blog:

**Xi'an's Og » R**.

R-bloggers.com offers

**daily e-mail updates**about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.

Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.