Data Science for Operational Excellence (Part-1)

April 6, 2017
By

[This article was first published on R-exercises, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.



R has many powerful libraries to handle operations research. This exercise tries to demonstrate a few basic functionality of R while dealing with linear programming.
Linear programming is a technique for the optimization of a linear objective function, subject to linear equality and linear inequality constraints.
The lpsolve package in R provides a set of functions to create models from scratch or use some prebuilt ones like the assignment and transportation problems.
Answers to the exercises are available here. If you obtained a different (correct) answer than those
listed on the solutions page, please feel free to post your answer as a comment on that page.
Please install and load the package lpsolve and igraph before starting the exercise.

Answers to the exercises are available here.

Exercise 1
Load packages lpSolve and igraph. Then, take a look at lp.assign to see how it works.

Exercise 2
Create a matrix representing the cost related to assign 4 tasks(rows) to 4 workers(cols) by generating integer random numbers between 50 and 100, with replacement. In order to make this exercise reproducible, define seed as 1234.

Exercise 3
Who should be assign to each task to obtain all the work done at minimal cost?

Exercise 4
Based on the resource allocation plan, how much we will spend to get all this work done?

Exercise 5
Take a look at lp.transport to see how it works. Set up the cost matrix by generating integer random numbers between 0 and 1000, without replacement. Consider that will be 8 factories(rows) serving 5 warehouses(cols).

Exercise 6
Set up the offer constraint by generating integer random numbers between 50 and 300, without replacement.

Exercise 7
Set up the demand constraint by generating integer random numbers between 100 and 500, without replacement.

Exercise 8
Find out which factory will not use all its capacity at the optimal cost solution.

Exercise 9
What is the cost associated to the optimal distribution?

Exercise 10
Create adjacency matrix using your solution in order to create a graph using igraph package.

To leave a comment for the author, please follow the link and comment on their blog: R-exercises.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Search R-bloggers

Sponsors

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)