an elegant sampler

January 14, 2020
By

[This article was first published on R – Xi'an's Og, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Following an X validated question on how to simulate a multinomial with fixed average, W. Huber produced a highly elegant and efficient resolution with the compact R code

tabulate(sample.int((k-1)*n, s-n) %% n + 1, n) + 1

where k is the number of classes, n the number of draws, and s equal to n times the fixed average. The R function sample.int is an alternative to sample that seems faster. Breaking the outcome of

sample.int((k-1)*n, s-n)

as nonzero positions in an n x (k-1) matrix and adding a adding a row of n 1’s leads to a simulation of integers between 1 and k by counting the 1’s in each of the n columns, which is the meaning of the above picture. Where the colour code is added after counting the number of 1’s. Since there are s 1’s in this matrix, the sum is automatically equal to s. Since the s-n positions are chosen uniformly over the n x (k-1) locations, the outcome is uniform. The rest of the R code is a brutally efficient way to translate the idea into a function. (By comparison, I brute-forced the question by suggesting a basic Metropolis algorithm.)

To leave a comment for the author, please follow the link and comment on their blog: R – Xi'an's Og.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Search R-bloggers

Sponsors

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)