Adjusted Momentum

July 31, 2014
By

(This article was first published on Systematic Investor » R, and kindly contributed to R-bloggers)

David Varadi has published two excellent posts / ideas about cooking with momentum:

I just could not resist the urge to share these ideas with you. Following is implementation using the Systematic Investor Toolbox.

###############################################################################
# Load Systematic Investor Toolbox (SIT)
# http://systematicinvestor.wordpress.com/systematic-investor-toolbox/
###############################################################################
setInternet2(TRUE)
con = gzcon(url('http://www.systematicportfolio.com/sit.gz', 'rb'))
    source(con)
close(con)
	#*****************************************************************
	# Load historical data
	#****************************************************************** 
	load.packages('quantmod')
		
	tickers = spl('SPY,^VIX')
		
	data <- new.env()
	getSymbols(tickers, src = 'yahoo', from = '1980-01-01', env = data, auto.assign = T)
		for(i in data$symbolnames) data[[i]] = adjustOHLC(data[[i]], use.Adjusted=T)
	bt.prep(data, align='remove.na', fill.gaps = T)

	VIX = Cl(data$VIX)
	bt.prep.remove.symbols(data, 'VIX')
	
	#*****************************************************************
	# Setup
	#*****************************************************************
	prices = data$prices
		
	models = list()

	#*****************************************************************
	# 200 SMA
	#****************************************************************** 
	data$weight[] = NA
		data$weight[] = iif(prices > SMA(prices, 200), 1, 0)
	models$ma200 = bt.run.share(data, clean.signal=T)
	
	#*****************************************************************
	# 200 ROC
	#****************************************************************** 
	roc = prices / mlag(prices) - 1
	
	data$weight[] = NA
		data$weight[] = iif(SMA(roc, 200) > 0, 1, 0)
	models$roc200 = bt.run.share(data, clean.signal=T)
	
	#*****************************************************************
	# 200 VIX MOM
	#****************************************************************** 
	data$weight[] = NA
		data$weight[] = iif(SMA(roc/VIX, 200) > 0, 1, 0)
	models$vix.mom = bt.run.share(data, clean.signal=T)

	#*****************************************************************
	# 200 ER MOM
	#****************************************************************** 
	forecast = SMA(roc,10)
	error = roc - mlag(forecast)
	mae = SMA(abs(error), 10)
	
	data$weight[] = NA
		data$weight[] = iif(SMA(roc/mae, 200) > 0, 1, 0)
	models$er.mom = bt.run.share(data, clean.signal=T)
		
	#*****************************************************************
	# Report
	#****************************************************************** 
	strategy.performance.snapshoot(models, T)

plot1

Please enjoy and share your ideas with David and myself.

To view the complete source code for this example, please have a look at the
bt.adjusted.momentum.test() function in bt.test.r at github.

To leave a comment for the author, please follow the link and comment on their blog: Systematic Investor » R.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Sponsors

Mango solutions



RStudio homepage



Zero Inflated Models and Generalized Linear Mixed Models with R

Quantide: statistical consulting and training

datasociety

http://www.eoda.de





ODSC

ODSC

CRC R books series





Six Sigma Online Training









Contact us if you wish to help support R-bloggers, and place your banner here.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)