Adjacent-Categories and Continuation-Ratio Logit Models for Ordinal Outcomes

August 26, 2018
By

[This article was first published on S+/R – Yet Another Blog in Statistical Computing, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

In the previous post (https://statcompute.wordpress.com/2018/01/28/modeling-lgd-with-proportional-odds-model), I’ve shown how to estimate a standard Cumulative Logit model with the ordinal::clm function and its use case in credit risk models. To better a better illustration of the underlying logic, an example is also provided below, showing how to estimate a Cumulative Logit model by specifying the log likelihood function.

pkgs <- list("maxLik", "VGAM")
sapply(pkgs, require, character.only = T)
df <- read.csv("Downloads/lgd.csv")
df$lgd_cat <- ifelse(round(1 - df[2], 4) == 0, "L",
                ifelse(round(1 - df[2], 4) == 1, "H", "M"))

### DEFINE LOGLIKELIHOOD FUNCTION OF CUMULATIVE LOGIT MODEL ###
# BELOW IS THE SIMPLER EQUIVALENT:
# vglm(sapply(c("L", "M", "H"), function(x) df$lgd_cat == x) ~ LTV, data = df, family = cumulative(parallel = T))

ll01 <- function(param) {
  a1 <- param[1]
  a2 <- param[2]
  b1 <- param[3]
  xb_L <- a1 - df$LTV * b1
  xb_M <- a2 - df$LTV * b1
  prob_L <- exp(xb_L) / (1 + exp(xb_L))
  prob_M <- exp(xb_M) / (1 + exp(xb_M)) - prob_L
  prob_H <- 1 - prob_M - prob_L
  CAT <- data.frame(sapply(c("L", "M", "H"), function(x) assign(x, df$lgd_cat == x)))
  LH <- with(CAT, (prob_L ^ L) * (prob_M ^ M) * (prob_H ^ H))
  return(sum(log(LH)))
}

Instead of modeling the cumulative probability of each ordered category such that Log(Prob <= Y_i / (1 – Prob <= Y_i)) = Alpha_i – XB, we could also have alternative ways to estimate the categorical probabilities by using Adjacent-Categories Logit and Continuation-Ratio Logit models.

In an Adjacent-Categories Logit model, the functional form can be expressed as Log(Prob = Y_i / Prob = Y_j) = Alpha_i – XB with j = i + 1. The corresponding log likelihood function is given in the code snippet below.

### DEFINE LOGLIKELIHOOD FUNCTION OF ADJACENT-CATEGORIES LOGIT MODEL ###
# BELOW IS THE SIMPLER EQUIVALENT:
# vglm(sapply(c("L", "M", "H"), function(x) df$lgd_cat == x) ~ LTV, data = df, family = acat(parallel = T, reverse = T))

ll02 <- function(param) {
  a1 <- param[1]
  a2 <- param[2]
  b1 <- param[3]
  xb_L <- a1 - df$LTV * b1
  xb_M <- a2 - df$LTV * b1
  prob_H <- 1 / (1 + exp(xb_M) + exp(xb_M + xb_L))
  prob_M <- exp(xb_M) * prob_H
  prob_L <- 1 - prob_H - prob_M
  CAT <- data.frame(sapply(c("L", "M", "H"), function(x) assign(x, df$lgd_cat == x)))
  LH <- with(CAT, (prob_L ^ L) * (prob_M ^ M) * (prob_H ^ H))
  return(sum(log(LH)))
}

If we take the probability (Prob = Y_i) from the Adjacent-Categories Logit and the probability (Prob > Y_i) from the Cumulative Logit, then we can have the functional form of a Continuation-Ratio Logit model, expressed as Log(Prob = Y_i / Prob > Y_i) = Alpha_i – XB. The log likelihood function is also provided.

### DEFINE LOGLIKELIHOOD FUNCTION OF CONTINUATION-RATIO LOGIT MODEL ###
# BELOW IS THE SIMPLER EQUIVALENT:
# vglm(sapply(c("L", "M", "H"), function(x) df$lgd_cat == x) ~ LTV, data = df, family = cratio(parallel = T, reverse = F))

ll03 <- function(param) {
  a1 <- param[1]
  a2 <- param[2]
  b1 <- param[3]
  xb_L <- a1 - df$LTV * b1
  xb_M <- a2 - df$LTV * b1
  prob_L <- 1 / (1 + exp(-xb_L))
  prob_M <- 1 / (1 + exp(-xb_M)) * (1 - prob_L)
  prob_H <- 1 - prob_L - prob_M
  CAT <- data.frame(sapply(c("L", "M", "H"), function(x) assign(x, df$lgd_cat == x)))
  LH <- with(CAT, (prob_L ^ L) * (prob_M ^ M) * (prob_H ^ H))
  return(sum(log(LH)))
}

After specifying log likelihood functions for aforementioned models, we can use the maxLik::maxLik() function to calculate parameter estimates. It is also shown that, in this particular example, the Cumulative Logit is slightly better than the other alternatives in terms of AIC.

# start = c(a1 = 0.1, a2 = 0.2, b1 = 1.0)
# lapply(list(ll01, ll02, ll03), (function(x) summary(maxLik(x, start = start))))

[[1]]
--------------------------------------------
Estimates:
   Estimate Std. error t value  Pr(t)    
a1  0.38134    0.08578   4.446 8.76e-06 ***
a2  4.50145    0.14251  31.587  < 2e-16 ***
b1  2.07768    0.12506  16.613  < 2e-16 ***
--------------------------------------------
[[2]]
--------------------------------------------
Estimates:
   Estimate Std. error t value  Pr(t)    
a1  0.32611    0.08106   4.023 5.74e-05 ***
a2  4.05859    0.14827  27.373  < 2e-16 ***
b1  1.88466    0.11942  15.781  < 2e-16 ***
--------------------------------------------
[[3]]
--------------------------------------------
Estimates:
   Estimate Std. error t value  Pr(t)    
a1  0.30830    0.08506   3.625 0.000289 ***
a2  4.14021    0.15024  27.558  < 2e-16 ***
b1  1.95643    0.12444  15.722  < 2e-16 ***
--------------------------------------------

# sapply(list(ll01, ll02, ll03), (function(x) AIC(maxLik(x, start = start))))
3764.110 3767.415 3771.373

To leave a comment for the author, please follow the link and comment on their blog: S+/R – Yet Another Blog in Statistical Computing.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Search R-bloggers

Sponsors

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)