a [Gregorian] calendar riddle

April 16, 2018

(This article was first published on R – Xi'an's Og, and kindly contributed to R-bloggers)

A simple riddle express this week on The Riddler, about finding the years between 2001 and 2099 with the most cases when day x month = year [all entries with two digits]. For instance, this works for 1 January, 2001 since 01=01 x 01. The only difficulty in writing an R code for this question is to figure out the number of days in a given month of a given year (in order to include leap years).

The solution was however quickly found on Stack Overflow and the resulting code is

#safer beta quantile
numOD <- function(date) {
    m <- format(date, format="%m")
    while (format(date, format="%m") == m) date <- date + 1
    return(as.integer(format(date - 1, format="%d")))
for (i in 2001:2099)
for (j in 2:11)

for (i in 1:99){
for (j in 1:12)
  if ((i==(i%/%j)*j)&((i%/%j)<=dayz[j,i])) 

The best year in this respect being 2024, with 7 occurrences of the year being the product of a month and a day…

To leave a comment for the author, please follow the link and comment on their blog: R – Xi'an's Og.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Search R-bloggers


Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)