Analysis of gene expression timecourse data using maSigPro

[This article was first published on What You're Doing Is Rather Desperate » R, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

ANXA11 expression in human smooth muscle aortic cells post-ILb1 exposure

ANXA11 expression in human smooth muscle aortic cells post-ILb1 exposure

About a year ago, I did a little work on a very interesting project which was trying to identify blood-based biomarkers for the early detection of stroke. The data included gene expression measurements using microarrays at various time points after the onset of ischemia (reduced blood supply). I had not worked with timecourse data before, so I went looking for methods and found a Bioconductor package, maSigPro, which did exactly what I was looking for. In combination with ggplot2, it generated some very attractive and informative plots of gene expression over time.

I was very impressed by maSigPro and meant to get around to writing a short guide showing how to use it. So I did finally, using RMarkdown to create the document and here it is. The document also illustrates how to retrieve datasets from GEO using GEOquery and annotate microarray probesets using biomaRt. Hopefully it’s useful to some of you.

I’ll probably do more of this in the future, since publishing RMarkdown to RPubs is far easier than copying, pasting and formatting at WordPress.

Filed under: bioinformatics, R, statistics Tagged: bioconductor, geo, masigpro, microarray, timecourse, tutorial

To leave a comment for the author, please follow the link and comment on their blog: What You're Doing Is Rather Desperate » R.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)