# Great Circles, Black Holes, and Community Events Part 3 of 3

**OutLie..R**, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)

Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

The histogram for distance shows a similar pattern, where with the railroad it was a nice log looking distribution, this is a little more even. The second histogram is a zoomed in and the bins expanded for greater detail.

While the map is not as great as the railroad, which is why the distance histogram is so important, it does show a good representation of the northwestern states. Unlike the railroad map, each line does represent more participants than 3.

What makes this tool so great is the ability to visually show the interaction between distance, number of participants, and the draw of an event. The numbers are nothing really new, but the charts are what make this analysis shine. When talking to community representatives whose education range from high school graduate to PhD, pictures are critical.

#Soldier Hallow Analysis soho<-read.csv(file.choose(), header=TRUE) summary(soho) table.city<-sort(table(soho$city), decreasing=TRUE) table.st<-sort(table(soho$state), decreasing=TRUE) par(mar=c(5, 11, 4, 2), las=2) barplot(table.city, main=‘SoHo: Cities’, horiz=TRUE, col=‘red’) par(mar=c(5, 4, 4, 2), las=2) barplot(table.st, main=‘SoHo: States’, horiz=TRUE, col=‘red’) heber<-c(-111.33259, 40.511413) soho.data<-matrix(data=c(soho$long, soho$lat), nrow=373, ncol=2) soho.ut<-subset(soho, subset=(state==‘UT’)) soho.data.ut<-matrix(data=c(soho.ut$long, soho.ut$lat), nrow=29, ncol=2) soho.dist<-(distm(heber, soho.data, fun=distVincentyEllipsoid)*0.000621371192) soho.dist.ut<-(distm(heber, soho.data.ut, fun=distVincentyEllipsoid)*0.000621371192) dist.soho<-matrix(soho.dist, nrow=373, ncol=1) dist.soho.ut<-matrix(soho.dist.ut, nrow=29, ncol=1) summary(dist.soho) sd(dist.soho) p.skew.soho<-(3*(mean(dist.soho)-median(dist.soho)))/sd(dist.soho) hist(dist.soho, main=‘SoHo: Distance Histogram’, col=‘red’) hist(dist.soho.ut, main=‘SoHo: Distance Histogram Utah’, breaks=20, col=‘red’) #mapping it out #US map("state", col="#f2f2f2", fill=TRUE, bg="white", lwd=0.25) title(main=‘SoHo: US Map’) for(i in 1:dim(soho.data)[1]){ inter <- gcIntermediate(heber, soho.data[i, 1:2], n=373, addStartEnd=TRUE) lines(inter, col="red") } #Zoomed into West par(mfrow=c(1,2), mar=c(5,4,4,2)) map("state", col="#f2f2f2", fill=TRUE, bg="white", lwd=0.25, xlim=c(-125, -103), ylim=c(30, 50)) title(main=‘SoHo: Western Region’) for(i in 1:dim(soho.data)[1]){ inter <- gcIntermediate(heber, soho.data[i, 1:2], n=373, addStartEnd=TRUE) lines(inter, col="red") } #Utah map("state", col="#f2f2f2", fill=TRUE, bg="white", lwd=0.25, xlim=c(-112.1, -111), ylim=c(40, 42)) title(main=‘SoHo: Utah’) for(i in 1:dim(soho.data.ut)[1]){ inter <- gcIntermediate(heber, soho.data.ut[i, 1:2], n=29, addStartEnd=TRUE) lines(inter, col="red") } par(mfrow=c(1,1))

**leave a comment**for the author, please follow the link and comment on their blog:

**OutLie..R**.

R-bloggers.com offers

**daily e-mail updates**about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.

Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.