# Parametric method for the study of the correlation: the Pearson r-test

[This article was first published on

Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Suppose you want to study whether there is a correlation between 2 sets of data. To do this we compute the **Statistic on aiR**, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

**Pearson product-moment correlation coefficient**, which is a measure of the correlation (linear dependence) between two variables X and Y; then we compute the value of a t-test to study the significance of the

**Pearson coefficient R**. We can use this test when the data follow a Gaussian distribution. A new test to measure IQ is subjected to 10 volunteers. You want to see if there is a correlation between the new experimental test and the classical test, in order to replace the old test with the new test. These the values:

Old test: 15, 21, 25, 26, 30, 30, 22, 29, 19, 16
New test: 55, 56, 89, 67, 84, 89, 99, 62, 83, 88

The software R has a single function, easily recalled, which gives us directly the value of the Pearson coefficient and the t-statistical test for checking the significance of the coefficient:
a = c(15, 21, 25, 26, 30, 30, 22, 29, 19, 16) b = c(55, 56, 89, 67, 84, 89, 99, 62, 83, 88) cor.test(a, b) Pearson's product-moment correlation data: a and b t = 0.4772, df = 8, p-value = 0.646 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: -0.5174766 0.7205107 sample estimates: cor 0.166349The value of the coefficient of Pearson is 0.166: it is a very low value, which indicates a poor correlation between the variables. Furthermore, the p-value is greater than 0.05; so we cannot reject the null hypothesis: then the Pearson coefficient is significant. So we can say that there is no discovery of correlation between the results of both tests.

To

**leave a comment**for the author, please follow the link and comment on their blog:**Statistic on aiR**.R-bloggers.com offers

**daily e-mail updates**about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.

Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.