This article provide a brief background about power and sample size analysis. Then, power and sample size analysis is computed for the Z test. Continue reading →

Power analysis is a very useful tool to estimate the statistical power from a study. It effectively allows a researcher to determine the needed sample size in order to obtained the required statistical power. Clients often ask (and rightfully so) what the sample size should be for a proposed project. Sample sizes end up being

Here are some (trivial) R tips in the course Stat 511. I’ll update this post till the semester is over. Formatting R Code Reading code is pain, but the well-formatted code might alleviate the pain a little bit. The function tidy.source() in the animation package can help us format our R code automatically. By default

Prior to conducting an experiment researchers will often undertake power calculations to determine the sample size required in their work to detect a meaningful scientific effect with sufficient power. In R there are functions to calculate either a minimum sample size for a specific power for a test or the power of a test for

e-mails with the latest R posts.

(You will not see this message again.)