Data Visualization doesn’t need to be biased

September 23, 2011

(This article was first published on Revolutions, and kindly contributed to R-bloggers)

At the FlowingData blog, data visualization commentator and Visualize This author Nathan Yau lists 5 misconceptions about visualization:

  • Software does everything (Nathan notes "Personally, I use a lot of R and have a lot of fun in Illustrator", but uses a lot of other tools as well.)
  • Visualization is for making data flashy
  • The more information in a single graphic, the better
  • It has to be exact
  • Visualization is too biased to be useful

I agree completely with Nathan's comments on the last point above:

There's a certain amount of subjectivity that goes into any visualization as you choose what data to show and how to show it. By focusing on one part of the data, you might inadvertently obscure another. However, if you're careful, get to know the data that you're dealing with, and stay true to what's there, then it should be easier to overcome bias.

After all, statistics is somewhat subjective, too. You choose what you analyze, what methods to use, and pick what to point out in reports.

News organizations, for example, have to do this all the time. They get a dataset, decide what story they want to tell (or find what story the data has to tell). Browse through graphics by The New York Times, and you can see how you can add a layer of information that objectively describes what the data is about.

This stands in contrast to the presentation I saw today at the Strata conference from Alex Lundry, Chart Wars: The Political Power of Data Visualization. (You can see a shorter version of his talk online). It was an entertaining talk, but his main point was to encourage data visualization partitioners to actively insert a point of view into the presentation of data. For example, he encourages more charts like the one on the right below, rather than the one on the left.

Usefuljunk-costs Usefuljunk-monster
(Images from Nigel Holmes' paper, Useful Junk? The Effects of Visual Embellishment on Comprehension and Memorability of Charts.)

Lundry's take is that because the image on the right is more easily recalled by those who have seen it, it's naturally better. I disagree. My objection to the chart on the right isn't just that uses chartjunk, nor that the teeth are disporoportionately sized to the values, nor even that the X "axis" is slanted upwards to exaggerate the rise. My objection is the chart on the right is that it actively pushes an analysis upon the viewer. As Nathan notes, there's always an element of bias in what data is selected to be presented, and the way it's presented. But good charts merely present data, and leave the analysis (obvious though it may be) to the viewer. When a chart takes on the burden of analysis for the viewer, that's when it strays from data visualization into propaganda.

FlowingData: 5 misconceptions about visualization 

To leave a comment for the author, please follow the link and comment on their blog: Revolutions. offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Tags: ,

Comments are closed.


Mango solutions

RStudio homepage

Zero Inflated Models and Generalized Linear Mixed Models with R

Dommino data lab

Quantide: statistical consulting and training



CRC R books series

Six Sigma Online Training

Contact us if you wish to help support R-bloggers, and place your banner here.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)