[This article was first published on T. Moudiki's Webpage - R, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Install and load packages
options(
repos = c(techtonique = 'https://techtonique.r-universe.dev',
CRAN = 'https://cloud.r-project.org')
)
install.packages("crossvalidation")
library(crossvalidation)
library(e1071)
Input data
transforming model response into a factor
y <- as.factor(as.numeric(iris$Species))
explanatory variables
X <- as.matrix(iris[, c("Sepal.Length", "Sepal.Width",
"Petal.Length", "Petal.Width")])
Objective – cross-validation – function to be maximized
OF <- function(xx) {
res <- crossvalidation::crossval_ml(
x = X,
y = y,
k = 5,
repeats = 3,
p = 0.8,
fit_func = e1071::svm,
predict_func = predict,
packages = "e1071",
fit_params = list(gamma = xx[1],
cost = xx[2])
)
# default metric is accuracy
return(res$mean_training)
}
There are many, many ways to maximize this objective function.
A naive random search optimization procedure
simulation of SVM’s hyperparameters’ matrix
n_points <- 250
set.seed(123)
(hyperparams <- cbind.data.frame(
gamma = runif(n = n_points,
min = 0,
max = 5),
cost = 10 ^ runif(n = n_points,
min = -1,
max = 2)
))
accuracies on the set of simulated hyperparameters
scores <- parallel::mclapply(1:n_points,
function(i)
OF(hyperparams[i,]),
mc.cores = parallel::detectCores())
scores <- unlist(scores)
‘best’ hyperparameters and associated training set score
max_index <- which.max(scores)
xx_best <- hyperparams[max_index,]
print(xx_best)
gamma cost
18 0.2102977 1.101473
print(OF(xx_best))
|===================================================================================| 100%
utilisateur système écoulé
0.284 0.079 0.365
[1] 0.9527778
To leave a comment for the author, please follow the link and comment on their blog: T. Moudiki's Webpage - R.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
