Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Each project closes with a table summarising the R tools used. By visualising my most frequently used packages and functions I get a sense of where I may most benefit from going deeper and keeping abreast of the latest package versions
I may also spot superseded functions e.g. spread and gather may now be replaced by pivot_wider and pivot_longer. Or an opportunity to switch a non-tidyverse package for a newer tidyverse (or ecosystem) alternative, e.g. for UpSetR I can now use ggupset which plays well with ggplot.
library(tidyverse) library(tidytext) library(rvest) library(wesanderson) library(janitor) library(glue) library(kableExtra) library(ggwordcloud) library(fpp3) library(tidymodels) library(patchwork) theme_set(theme_bw()) (cols <- wes_palette(name = "IsleofDogs2"))
I’ll start by grabbing the url for every project.
urls <- "https://www.quantumjitter.com/project/" |>
read_html() |>
html_elements(".underline .db") |>
html_attr("href") |>
as_tibble() |>
transmute(str_c("https://www.quantumjitter.com/", value)) |>
pull()
This enables me to extract the usage table for each project.
table_df <- map_dfr(urls, function(x) {
x |>
read_html() |>
html_elements("#r-toolbox , table") |>
html_table()
}) |>
clean_names(replace = c("io" = "")) |>
select(package, functn) |>
drop_na()
A little “spring cleaning” is needed, and separation of tidyverse and non-tidyverse packages.
tidy <-
c(
tidyverse_packages(),
fpp3_packages(),
tidymodels_packages()
) |>
unique()
tidy_df <- table_df |>
separate_rows(functn, sep = ";") |>
separate(functn, c("functn", "count"), "\\Q[\\E") |>
mutate(
count = str_remove(count, "]") |> as.integer(),
functn = str_squish(functn)
) |>
count(package, functn, wt = count) |>
mutate(multiverse = case_when(
package %in% tidy ~ "tidy",
package %in% c("base", "graphics") ~ "base",
TRUE ~ "special"
))
Then I can summarise usage and prepare for a faceted plot.
pack_df <- tidy_df |>
count(package, multiverse, wt = n) |>
mutate(name = "package")
fun_df <- tidy_df |>
count(functn, multiverse, wt = n) |>
mutate(name = "function")
n_url <- urls |> n_distinct()
packfun_df <- pack_df |>
bind_rows(fun_df) |>
group_by(name) |>
arrange(desc(n)) |>
mutate(
packfun = coalesce(package, functn),
name = fct_rev(name)
)
Clearly dplyr reigns supreme driven by mutate and filter.
p1 <- packfun_df |>
filter(name == "package") |>
ggplot(aes(fct_reorder(packfun, n), n, fill = multiverse)) +
geom_col(show.legend = FALSE) +
coord_flip() +
geom_label(aes(label = n), hjust = "inward", size = 2, fill = "white") +
scale_fill_manual(values = cols[c(2, 3, 1)]) +
labs(
title = glue("Favourite Things\nAcross {n_url} Projects"),
subtitle = "Package Usage",
x = NULL, y = NULL
)
p2 <- packfun_df |>
filter(name == "function", n >= 4) |>
ggplot(aes(fct_reorder(packfun, n), n, fill = multiverse)) +
geom_col() +
coord_flip() +
geom_label(aes(label = n), hjust = "inward", size = 2, fill = "white") +
scale_fill_manual(values = cols[c(2, 3, 1)]) +
labs(x = NULL, y = NULL,
subtitle = "Function Usage >= 4")
p1 + p2
I’d also like a wordcloud. And thanks to blogdown, the updated visualisation is picked up as the new featured image for this project.
set.seed = 123
packfun_df |>
mutate(angle = 45 * sample(-2:2, n(),
replace = TRUE,
prob = c(1, 1, 4, 1, 1))) |>
ggplot(aes(
label = packfun,
size = n,
colour = multiverse,
angle = angle
)) +
geom_text_wordcloud(
eccentricity = 1,
seed = 789
) +
scale_size_area(max_size = 20) +
scale_colour_manual(values = cols[c(4, 2, 3)]) +
theme_void() +
theme(plot.background = element_rect(fill = cols[1]))
R Toolbox < svg class="anchor-symbol" aria-hidden="true" height="26" width="26" viewBox="0 0 22 22" xmlns="http://www.w3.org/2000/svg"> < path d="M0 0h24v24H0z" fill="currentColor"> < path d="M3.9 12c0-1.71 1.39-3.1 3.1-3.1h4V7H7c-2.76.0-5 2.24-5 5s2.24 5 5 5h4v-1.9H7c-1.71.0-3.1-1.39-3.1-3.1zM8 13h8v-2H8v2zm9-6h-4v1.9h4c1.71.0 3.1 1.39 3.1 3.1s-1.39 3.1-3.1 3.1h-4V17h4c2.76.0 5-2.24 5-5s-2.24-5-5-5z">
A little bit circular I know, but I might as well include this code too in my “favourite things”.
| Package | Function |
|---|---|
| base | as.integer[1]; c[5]; conflicts[1]; cumsum[1]; function[2]; sample[1]; search[1]; sum[1]; unique[1] |
| dplyr | filter[7]; arrange[3]; bind_rows[1]; case_when[1]; coalesce[1]; count[4]; desc[3]; group_by[2]; if_else[3]; mutate[10]; n[8]; n_distinct[1]; pull[1]; select[1]; summarise[1]; transmute[1] |
| forcats | fct_reorder[2]; fct_rev[1] |
| fpp3 | fpp3_packages[1] |
| ggplot2 | aes[5]; coord_flip[2]; element_rect[1]; geom_col[2]; geom_label[2]; ggplot[3]; labs[2]; scale_colour_manual[1]; scale_fill_manual[2]; scale_size_area[1]; theme[1]; theme_bw[1]; theme_set[1]; theme_void[1] |
| ggwordcloud | geom_text_wordcloud[1] |
| glue | glue[1] |
| janitor | clean_names[1] |
| kableExtra | kbl[1] |
| purrr | map[1]; map_dfr[1]; map2_dfr[1]; possibly[1]; set_names[1] |
| readr | read_lines[1] |
| rvest | html_attr[1]; html_elements[2]; html_table[1]; read_html[2] |
| stringr | str_c[6]; str_count[1]; str_detect[2]; str_remove[3]; str_remove_all[1]; str_squish[1]; str_starts[1] |
| tibble | as_tibble[2]; tibble[2]; enframe[1] |
| tidymodels | tidymodels_packages[1] |
| tidyr | drop_na[1]; separate[1]; separate_rows[1]; unnest[1] |
| tidyverse | tidyverse_packages[1] |
| wesanderson | wes_palette[1] |
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
