# YAP: Yet Another Probabilistic Neural Network

[This article was first published on

Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

**S+/R – Yet Another Blog in Statistical Computing**, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

By the end of 2019, I finally managed to wrap up my third R package YAP (https://github.com/statcompute/yap) that implements the Probabilistic Neural Network (Specht, 1990) for the N-category pattern recognition with N > 3. Similar to GRNN, PNN shares same benefits of instantaneous training, simple structure, and global convergence.

Below is a demonstration showing how to use the YAP package and a comparison between the multinomial regression and the PNN. As shown below, both approaches delivered very comparable predictive performance. In this particular example, PNN even performed slightly better in terms of the cross-entropy for a separate testing dataset.

data("Heating", package = "mlogit") Y <- Heating[, 2] X <- scale(Heating[, 3:15]) idx <- with(set.seed(1), sample(seq(nrow(X)), nrow(X) / 2)) ### FIT A MULTINOMIAL REGRESSION AS A BENCHMARK ### m1 <- nnet::multinom(Y ~ ., data = data.frame(X, Y)[idx, ], model = TRUE) # cross-entropy for the testing set yap::logl(y_pred = predict(m1, newdata = X, type = "prob")[-idx, ], y_true = yap::dummies(Y)[-idx, ]) # 1.182727 ### FIT A PNN ### n1 <- yap::pnn.fit(x = X[idx, ], y = Y[idx]) parm <- yap::pnn.search_logl(n1, yap::gen_latin(1, 10, 20), nfolds = 5) n2 <- yap::pnn.fit(X[idx, ], Y[idx], sigma = parm$best$sigma) # cross-entropy for the testing set yap::logl(y_pred = yap::pnn.predict(n2, X)[-idx, ], y_true = yap::dummies(Y)[-idx, ]) # 1.148456

To

**leave a comment**for the author, please follow the link and comment on their blog:**S+/R – Yet Another Blog in Statistical Computing**.R-bloggers.com offers

**daily e-mail updates**about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.

Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.