ttrTests Experimentation

August 16, 2011

(This article was first published on Timely Portfolio, and kindly contributed to R-bloggers)

I was intrigued by the CRAN update on a package ttrTests, especially since quantstrat is not built for backtesting system parameters and analyzing system performance as I mentioned in A Quantstrat to Build On Part 6.  ttrTests offers a nice start to my ideal setup for system development, testing, and reporting.  In upcoming posts, I hope to build some functionality on top of ttrTests to accomplish my objectives.

I proposed a basic counting system in A Quantstrat to Build On Part 6, but randomly assigned a 50 week (250 days or 1 trading year) parameter to the count.  With the help of ttrTests and a couple of index series from Yahoo!Finance, let’s see what parameters work best.  Then we can aggregate and graph to visualize the results.  As always, THIS IS NOT INVESTMENT ADVICE, and I welcome comments and suggestions.


From TimelyPortfolio
From TimelyPortfolio
From TimelyPortfolio
From TimelyPortfolio
From TimelyPortfolio
From TimelyPortfolio
From TimelyPortfolio
From TimelyPortfolio
From TimelyPortfolio
From TimelyPortfolio
From TimelyPortfolio

R code (click to download):

#let's define our silly countupdown function
#as a sample of a custom ttr rule
CUD <- function(x,params=50,...) {
#CUD takes the n-period sum of 1 (up days) and -1 (down days)
temp <- ifelse(runSum(ifelse(ROC(x,1,type="discrete") > 0,1,-1),params)>=0,1,0)
#replace NA with 0 at beginning of period
temp[] <- 0
}   require(ttrTests)
require(PerformanceAnalytics)   #defaults functions is overridden by ggplot2 and plyr if loaded
#and will cause problems if you want to use ttrTests concurrently   tckrs <- c("GSPC","RUT","N225","GDAXI","DJUBS")   for (i in 1:length(tckrs)) {
test_price <- as.vector(get(tckrs[i])[,4])
#do parameter tests but plot=FALSE
#we will plot later
#if you want plot=TRUE make sure you add here
param_results <- paramStats(x=test_price, ttr = CUD, start = 20, nSteps = 30, stepSize = 10,
restrict = FALSE, burn = 0, short = FALSE, condition = NULL,
silent = TRUE, TC = 0.001, loud = TRUE, plot = FALSE, alpha = 0.025,
begin = 1, percent = 1, file = "", benchmark = "hold")
#get excess returns and add to matrix
ifelse(i==1,param_all <- param_results[[1]],
param_all <- cbind(param_all,param_results[[1]]))
#get best parameter and add to matrix
ifelse(i==1,param_best <- param_results[[5]],
param_best <- rbind(param_best,param_results[[5]]))
rownames(param_best) <- tckrs
print(param_best)   param_all <- cbind(param_results[[8]],param_all)
#fix rownames and colnames for param_all
colnames(param_all) <- c("parameters",tckrs)   df <-
df.melt <- melt(df,id.vars=1)
colnames(df.melt) <- c("parameters","index","excessreturn")
param_plot <- xyplot(excessreturn~parameters,group=index,data=df.melt,
auto.key=TRUE,type="l",main="Excess Returns by Parameter")
#jpeg(filename="excess return by parameter.jpg",
quality=100,width=6.25, height = 6.25, units="in",res=96)
#want to add points for max but unsure how currently
#df.melt[which(df.melt$parameters==param_best[1,] & df.melt$index==rownames(param_best)[1] ),3]   #get performance summary for the best parameters
for (i in 1:length(tckrs)) {
#jpeg(filename=paste(tckrs[i],"performance summary.jpg",sep=""),
# quality=100,width=6.25, height = 6.25, units="in",res=96)
ret <- merge(lag(CUD(get(tckrs[i])[,4],
coredata(param_best)[1],k=1))*ROC(get(tckrs[i])[,4],type="discrete", n=1),
ROC(get(tckrs[i])[,4],type="discrete", n=1))
colnames(ret)<-c(paste(tckrs[i]," CUD System",sep=""),tckrs[i])
price_system <- merge(get(tckrs[i])[,4],
price_system[which(price_system[,2]==0),2] <- NA
colnames(price_system) <- c("Out","In","System")
#jpeg(filename=paste(tckrs[i],"entry analysis.jpg",sep=""),
# quality=100,width=6.25, height = 6.25, units="in",res=96)
name=paste(tckrs[i]," Linear Model System",sep=""))

To leave a comment for the author, please follow the link and comment on their blog: Timely Portfolio. offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Tags: ,

Comments are closed.

Search R-bloggers


Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)