Here you will find daily news and tutorials about R, contributed by hundreds of bloggers.
There are many ways to follow us - By e-mail:On Facebook: If you are an R blogger yourself you are invited to add your own R content feed to this site (Non-English R bloggers should add themselves- here)

[This article was first published on geomorph, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Geomorph users, This month’s tips and tricks was prompted by a user email from Tim Astrop, thanks Tim! How can I create a hypothetical shape representing a point in shape space? Today we will use some relatively simple R code to create a shape based on position in a Principal Component (PC) shape space and visualise this shape as a change from the mean using plotRefToTarget(). Exercise 9 – Creating hypothetical shapes

When you use plotTangentSpace() to visualise the variation among individuals in your dataset, two thin-plate spline (tps) deformation grids are plotted by default: > data(plethodon) > Y.gpa<-gpagen(plethodon$land) #GPA-alignment > gp <- as.factor(paste(plethodon$species, plethodon$site))

> PCA <- plotTangentSpace(Y.gpa$coords, groups = gp, verbose=T)

plotTangentSpace() example using plethodon dataset

These represent the shape change between the mean and the minimum PC1 score or maximum PC1 score. This is why the arrows point to the coordinates (max(PC1), 0) and (min(PC1), 0). They are made from the hypothetical shapes at the ends of the PC1 axis. When you use verbose = T, a list called $pc.shapes is returned. In this list are the coordinates for the shapes at the minima and maxima of the two axes used in the plot (default PCs 1 and 2). These are returned so that you can plot these tps grids yourself using plotRefToTarget(), e.g.:

Above we are doing a matrix multiplication (%*%) of the vector pc.vec and the transpose of the rotation matrix, making it into a p x k matrix using our arrayspecs function, and then adding in the mean shape we made earlier, so:

> PC1max

[,1] [,2]

[1,] 0.14208576 -0.022246055

[2,] 0.17904134 -0.088344179

[3,] -0.02011384 -0.002132243

[4,] -0.28076578 -0.088499525

[5,] -0.30905960 -0.061152408

[6,] -0.32381908 -0.036119622

[7,] -0.31939430 0.031269185

[8,] -0.19235878 0.099093107

[9,] 0.01443297 0.106911342

[10,] 0.18138128 0.077532805

[11,] 0.39536788 0.058597759

[12,] 0.53320215 -0.074910167

The important part above is the pc.vec[1] <- pcaxis.max.1

In this way, it is possible to create any shape in the PC shape space, simply by adding in the coordinates into the vector we call here pc.vec.

Further reading:Rohlf, F.J., 1996. Morphometric spaces, shape components and the effects of linear transformations. In L. F. Marcus et al., eds. Advances in Morphometrics. NY: Plenum Press, pp. 117–130.

Enjoy!

Emma

Related

To leave a comment for the author, please follow the link and comment on their blog: geomorph.