the curious incident of the inverse of the mean

July 1, 2016
By

(This article was first published on R – Xi'an's Og, and kindly contributed to R-bloggers)

A s I figured out while working with astronomer colleagues last week, a strange if understandable difficulty proceeds from the simplest and most studied statistical model, namely the Normal model

x~N(θ,1)

Indeed, if one reparametrises this model as x~N(υ⁻¹,1) with υ>0, a single observation x brings very little information about υ! (This is not a toy problem as it corresponds to estimating distances from observations of parallaxes.) If x gets large, υ is very likely to be small, but if x is small or negative, υ is certainly large, with no power to discriminate between highly different values. For instance, Fisher’s information for this model and parametrisation is υ⁻² and thus collapses at zero.

While one can always hope for Bayesian miracles, they do not automatically occur. For instance, working with a Gamma prior Ga(3,10³) on υ [as informed by a large astronomy dataset] leads to a posterior expectation hardly impacted by the value of the observation x:

invormAnd using an alternative estimate like the harmonic posterior mean that is associated with the relative squared error loss does not see much more impact from the observation:

invarmThere is simply not enough information contained in one datapoint (or even several datapoints for all that matters) to infer about υ.

Filed under: R, Statistics, University life Tagged: astronomy, Bayesian inference, inverse problems, parallaxes

To leave a comment for the author, please follow the link and comment on their blog: R – Xi'an's Og.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Sponsors

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)