Survival Analysis – 1

[This article was first published on Just Another Data Blog, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

I recently was looking for methods to apply to time-to-event data and started exploring Survival Analysis Models. In this post, I’m exploring basic KM estimator. It is a nonparametric estimator of the survival function. There are couple of instances when the KM estimator comes in handy –

  • When the survival time is censored
  • Comparing survival function for different preassigned groups.

Below I’m computing KM estimator for a real dataset (on time to death for 80 males who were diagnosed with different types of tongue cancer, from package KMsurv) and a simulated dataset (created using package survsim). In addition I am using survivalOIsurv, dplyr, ggplot2 and broom for this analysis. The first example is taken from an openintro tutorial.

The rmarkdown document illustrating below analysis can also be found here. In my future posts, I’m planning to explore more on following survival models –

  • Proportional hazards model
  • Accelerated failure time Model
  • Multiple events model (More than 2 possible events)
  • Recurring events (Each subject can experience an event multiple times).

To leave a comment for the author, please follow the link and comment on their blog: Just Another Data Blog. offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)