[This article was first published on

Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

**Rcpp Gallery**, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

The STL also contains random sampling and shuffling algorithms. We start by looking at `random_shuffle`

.

There are two forms. The first uses an internal RNG with its own seed; the second form allows for a function object conformant to the STL’s requirements (essentially, given `N`

produce a uniform draw greater or equal to zero and less than `N`

). This is useful for us as it lets us tie this to the same RNG which R uses.

`#include `
// wrapper around R's RNG such that we get a uniform distribution over
// [0,n) as required by the STL algorithm
inline int randWrapper(const int n) { return floor(unif_rand()*n); }
// [[Rcpp::export]]
Rcpp::NumericVector randomShuffle(Rcpp::NumericVector a) {
// already added by sourceCpp(), but needed standalone
Rcpp::RNGScope scope;
// clone a into b to leave a alone
Rcpp::NumericVector b = Rcpp::clone(a);
std::random_shuffle(b.begin(), b.end(), randWrapper);
return b;
}

We can illustrate this on a simple example or two:

```
a <- 1:8
set.seed(42)
randomShuffle(a)
```

[1] 1 4 3 7 5 8 6 2

```
set.seed(42)
randomShuffle(a)
```

[1] 1 4 3 7 5 8 6 2

By tieing the STL implementation of the random permutation to the RNG from R, we are able to compute reproducible permutations, fast and from C++.

To

**leave a comment**for the author, please follow the link and comment on their blog:**Rcpp Gallery**.R-bloggers.com offers

**daily e-mail updates**about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.

Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.