373 search results for "PCA"

Customer Segmentation Part 2: PCA for Segment Visualization

September 3, 2016
By

This post is the second part in the customer segmentation analysis. The first post focused on k-means clustering in R to segment customers into distinct groups based on purchasing habits. This post takes a different approach, using Pricipal Component Analysis (PCA) in R as a tool to view customer groups. Because PCA attacks the...

Read more »

Tips & Tricks 7: Plotting PCA with TPS grids

March 19, 2015
By
Tips & Tricks 7: Plotting PCA with TPS grids

Geomorph users,Our function plotTangentSpace() performs a Principal Components Analysis (PCA) of shape variation and plots two dimensions of tangent space for a set of Procrustes-aligned specimens and also returns the shape cha...

Read more »

PCA / EOF for data with missing values – a comparison of accuracy

September 15, 2014
By
PCA / EOF for data with missing values – a comparison of accuracy

Not all Principal Component Analysis (PCA) (also called Empirical Orthogonal Function analysis, EOF) approaches are equal when it comes to dealing with a data field that contain missing values (i.e. "gappy"). The following post compares several methods by assessing the accuracy of the derived PCs to reconstruct the "true" data set, as was similarly...

Read more »

PCA and K-means Clustering of Delta Aircraft

June 22, 2014
By
PCA and K-means Clustering of Delta Aircraft

nIntroductionnI work in consulting. If you're a consultant at a certain type of company, agency, organization, consultancy, whatever, this can sometimes mean travelling a lot.nnMany business travellers 'in the know' have heard the old joke that if you want to stay at any type of hotel anywhere in the world and get a great rate, all you have to...

Read more »

Bayesian PCA

January 5, 2014
By

Authors: Jan Smycka, Petr Keil This post introduces experimental R package bPCA which we developed with Jan Smycka, who actually came with the idea. We do not guarantee the very idea to be correct and there certainly are bugs – we invite anyone to show us wrong, or to contribute. … Continue reading →

Read more »

Computing and visualizing PCA in R

November 28, 2013
By
Computing and visualizing PCA in R

Following my introduction to PCA, I will demonstrate how to apply and visualize PCA in R. There are many packages and functions that can apply PCA in R. In this post I will use the function prcomp from the stats package. I will also show how to visualize PCA in R using Base R graphics.

Read more »

PCA or SPCA or NSPCA?

November 15, 2013
By

Principal component analysis(PCA) is one of the classical methods in multivariate statistics. In addition, it is now widely used as a way to implement data-processing and dimension-reduction. Besides statistics, there are numerous applications about PCA in engineering, biology, and so on. There are two main optimal properties of PCA,  which are guaranteeing minimal information loss and uncorrelated principal components. That's … Continue reading...

Read more »

Introduction to Feature selection for bioinformaticians using R, correlation matrix filters, PCA & backward selection

October 17, 2013
By
Introduction to Feature selection for bioinformaticians using R, correlation matrix filters, PCA & backward selection

Bioinformatics is becoming more and more a Data Mining field. Every passing day, Genomics and Proteomics yield bucketloads of multivariate data (genes, proteins, DNA, identified peptides, structures), and every one of these biological data units are described by a number of features: length, physicochemical properties, scores, etc. Careful consideration of which features to select when trying...

Read more »

PCA to PLS modeling analysis strategy for WIDE DATA

March 2, 2013
By
PCA to PLS modeling analysis strategy for WIDE DATA

Working with wide data is already hard enough, add to this row outliers and things can get murky fast. Here is an example of an anlysis of a wide data set, 24 rows  x 84 columns. Using imDEV, written in R, to calculate and visualize a principal components analysis (PCA) on this data set. We find that

Read more »

Finding a pin in a haystack – PCA image filtering

December 4, 2012
By
Finding a pin in a haystack – PCA image filtering

I found the following post regarding the anomalous metal object observed in a Curiosity Rover photo to be fascinating - specifically, the clever ways that some programmers used for filtering the image for the object. The following answer on mathematica.stackexchange.com was especially illuminating for its use of a multivariate distribution to...

Read more »

Sponsors

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)