S-shaped data: Smoothing with quasibinomial distribution

January 16, 2016
By

(This article was first published on Memo's Island, and kindly contributed to R-bloggers)

Figure 1: Synthetic data and fitted curves.

S-shaped distributed data can be found in many applications. Such data can be approximated with logistic distribution function [1].  Cumulative distribution function of logistic distribution function is a logistic function, i.e., logit.

To demonstrate this, in this short example, after generating a synthetic data, we will fit quasibinomial regression model to different observations.

ggplot [2], an implementation of grammar of graphics [3], provides capability to apply regression or customised smoothing onto a raw data during plotting.

Generating Synthetic Data

Let generate set of $n$ observation over time $t$, denoted, $X_{1}, X_{2}, …, X_{n}$ for $k$ observation $X=(x_{1}, x_{2}, …, x_{k})$. We will use cumulative function for logistic distribution [4],
$$F(x;mu,s) = frac{1}{2} + frac{1}{2} tanh((x-mu)/2s)$$, adding some random noise to make
it realistic.

Let’s say there are $k=6$ observations with the following parameter sets, $mu = {9,2,3,5,7,5}$  and $s={2,2,4,3,4,2}$, we will utilise `mapply` [5] in generating a syntetic data frame.

generate_logit_cdf <- function(mu, s, 
sigma_y=0.1,
x=seq(-5,20,0.1)) {
x_ms <- (x-mu)/s
y <- 0.5 + 0.5 * tanh(x_ms)
y <- abs(y + rnorm(length(x), 0, sigma_y))
ix <- which(y>=1.0)
if(length(ix)>=1) {
y[ix] <- 1.0
}
return(y)
}
set.seed(424242)
x <- seq(-5,20,0.025) # 1001 observation
mu_vec <- c(1,2,3,5,7,8) # 6 variables
s_vec <- c(2,2,4,3,4,2)
# Syntetic variables
observations_df<- mapply(generate_logit_cdf,
mu_vec,
s_vec,
MoreArgs = list(x=x))
# Give them names
colnames(observations_df) <- c("Var1", "Var2", "Var3", "Var4", "Var5", "Var6")
head(observations_df)

Smoothing of observations

Using the syntetic data we have generated, `observations_df`,
we can noq use `ggplot` and `quasibinomial` `glm` to visualise
and smooth the variables.

library(ggplot2)
library(reshape2)
df_all <- reshape2:::melt(observations_df)
colnames(df_all) <- c("x", "observation", "y")
df_all$observation <- as.factor(df_all$observation)
p1<-ggplot(df_all, aes(x=x, y=y, colour=observation)) + geom_point() +
scale_color_brewer(palette = "Reds") +
theme(
panel.background = element_blank(),
axis.text.x = element_text(face="bold", color="#000000", size=11),
axis.text.y = element_text(face="bold", color="#000000", size=11),
axis.title.x = element_text(face="bold", color="#000000", size=11),
axis.title.y = element_text(face="bold", color="#000000", size=11)
# legend.position = "none"
)
l1<-ggplot(df_all, aes(x=x, y=y, colour=observation)) +
geom_point(size=3) + scale_color_brewer(palette = "Reds") +
scale_color_brewer(palette = "Reds") +
#geom_smooth(method="loess", se = FALSE, size=1.5) +
geom_smooth(aes(group=observation),method="glm", family=quasibinomial(), formula="y~x",
se = FALSE, size=1.5) +
xlab("x") +
ylab("y") +
#scale_y_continuous(breaks=seq(0.0,1,0.1)) +
#scale_x_continuous(breaks=seq(0.0,230,20)) +
#ggtitle("") +
theme(
panel.background = element_blank(),
axis.text.x = element_text(face="bold", color="#000000", size=11),
axis.text.y = element_text(face="bold", color="#000000", size=11),
axis.title.x = element_text(face="bold", color="#000000", size=11),
axis.title.y = element_text(face="bold", color="#000000", size=11)
)
library(gridExtra)
gridExtra:::grid.arrange(p1,l1)

References
[1] https://en.wikipedia.org/wiki/Logistic_distribution#Applications
[2] http://www.ggplot.org
[3] The Grammar of Graphics, L. Wilkinson, http://www.amzn.com/038724544
[4] http://en.wikipedia.org/wiki/Logistic_distribution#Cumulative_distribution_function.
[5] https://stat.ethz.ch/R-manual/R-devel/library/base/html/mapply.html

To leave a comment for the author, please follow the link and comment on their blog: Memo's Island.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Sponsors

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)