Reproducibility in computational research

September 25, 2015
By

[This article was first published on R on Rob J Hyndman, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Jane Frazier spoke at our research team meeting today on “Reproducibility in computational research”. We had a very stimulating and lively discussion about the issues involved. One interesting idea was that reproducibility is on a scale, and we can all aim to move further along the scale towards making our own research more reproducible. For example

  • Can you reproduce your results tomorrow on the same computer with the same software installed?
  • Could someone else on a different computer reproduce your results with the same software installed?
  • Could you reproduce your results in 3 years time after some of your software environment may have changed?
  • etc.

Think about what changes you need to make to move one step further along the reproducibility continuum, and do it.

Jane’s slides and handout are below.

Slides:

Handout:

To leave a comment for the author, please follow the link and comment on their blog: R on Rob J Hyndman.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Search R-bloggers

Sponsors

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)