R Video Tutorial for Spatial Statistics

March 2, 2011
By

(This article was first published on R Video tutorial for Spatial Statistics, and kindly contributed to R-bloggers)

Welcome everybody, this is a video tutorial that will try to teach you how to use R for spatial statistics and interpolation.

I’m a PhD student in soil science and in particular my project is about digital soil mapping. During my work I often use R particularly for geostatstical interpolation. Despite R being a very powerful statistical language which has became a benchmark for spatial statistics, it is also a relatively difficult language to learn with one of the steepest learning curve among programming languages.

For this reason I though about sharing what I’ve learned during my PhD with all the R community. I prepared this video tutorial because I think that the easy way of learning R is by examples.

The tutorial is structured as follow: the first two lesson are about the basics of R, how to handle R objects, plotting and saving your work. This part is intended for a beginner user who want to learn the language. Starting from the third lesson I will show examples on how to handle and plotting spatial data and rasters, and in the last two lesson I will show you how to perform an ordinary and a universal kriging in R.

In this tutorial I will show you some example that will hopefully help you learning R in a quicker and easier way. However, this course is not a complete R course, because R has lots and lots of different functions for every branch of science. For this reason at the beginning of the course and at the end of the lesson, if appropriate, I will give you some references if you want to deepen your knowledge.

The link to the course is here: http://www.fabioveronesi.net/rtutorial.html

If you have any suggestion at all on how to improve the course or any other feedback, send an e-mail to: [email protected]

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...