R – Defining Your Own Color schemes for HeatMaps

March 25, 2013

(This article was first published on Doodling with Data, and kindly contributed to R-bloggers)

This post is intended at those who are beginners at R, and is inspired by a small post in Martin’s bioblog.

First, we plot a “correlation heatmap” using the same logic that Martin uses. In our example, let’s use the Movies dataset that comes with ggplot2.

We take the 6 genre columns, and we can compute the correlation matrix for those 6 columns.
Here’s what the matrix looks like:

> cor(movieGenres) # 6×6 cor matrix
                  Action   Animation      Comedy        Drama
Action       1.000000000 -0.05443315 -0.08288728  0.007760094
Animation   -0.054433153  1.00000000  0.17967294 -0.179155441
Comedy      -0.082887284  0.17967294  1.00000000 -0.255784957
Drama        0.007760094 -0.17915544 -0.25578496  1.000000000
Documentary -0.069487718 -0.05204238 -0.14083580 -0.173443622
Romance     -0.023355368 -0.06637362  0.10986485  0.103545195
            Documentary     Romance
Action      -0.06948772 -0.02335537
Animation   -0.05204238 -0.06637362
Comedy      -0.14083580  0.10986485
Drama       -0.17344362  0.10354520
Documentary  1.00000000 -0.07157792
Romance     -0.07157792  1.00000000

When we plot with the default colors we get:

It is difficult to see the details in the tiles. Now, if you want to better control the colors, you can use the handy colorRampPalette() function and combine that with scale_fill_gradient2.
Let’s say that we want “red” colors for negative correlations and “green” for positives.
(We can gray out the 1 along the diagonal.)

Doing this produces:

If there are values close to 1 or to -1, those will pop out visually. Values close to 0 are a lot more muted.

Hope that helps someone.

References: Using R: Correlation Heatmap with ggplot2

To leave a comment for the author, please follow the link and comment on their blog: Doodling with Data.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Search R-bloggers


Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)