puzzled by harmony [not!]

December 12, 2016

(This article was first published on R – Xi'an's Og, and kindly contributed to R-bloggers)

In answering yet another question on X validated about the numerical approximation of the marginal likelihood, I suggested using an harmonic mean estimate as a simple but worthless solution based on an MCMC posterior sample. This was on a toy example with a uniform prior on (0,π) and a “likelihood” equal to sin(θ) [really a toy problem!]. Simulating an MCMC chain by a random walk Metropolis-Hastings algorithm is straightforward, as is returning the harmonic mean of the sin(θ)’s.

f <- function(x){
    if ((0

However, the outcome looks remarkably stable and close to the expected value 2/π, despite 1/sin(θ) having an infinite integral on (0,π). Meaning that the average of the 1/sin(θ)’s has no variance. Hence I wonder why this specific example does not lead to an unreliable output… But re-running the chain with a smaller scale σ starts producing values of sin(θ) regularly closer to zero, which leads to an estimate of I both farther away from 2 and much more variable. No miracle, in the end!

Filed under: Books, Kids, Mountains, pictures, R, Running, Statistics, Travel Tagged: Gaussian random walk, harmonic mean estimator, Metropolis-Hastings algorithm, Monte Carlo Statistical Methods, numerical integration, simulation

To leave a comment for the author, please follow the link and comment on their blog: R – Xi'an's Og.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Search R-bloggers


Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)