# Probabilistic Momentum

February 16, 2014
By

(This article was first published on Systematic Investor » R, and kindly contributed to R-bloggers)

David Varadi has recently discussed an interesting strategy in the
Are Simple Momentum Strategies Too Dumb? Introducing Probabilistic Momentum post. David also provided the Probabilistic Momentum Spreadsheet if you are interested in doing computations in Excel. Today I want to show how you can test such strategy using the Systematic Investor Toolbox:

```###############################################################################
# Load Systematic Investor Toolbox (SIT)
# http://systematicinvestor.wordpress.com/systematic-investor-toolbox/
###############################################################################
setInternet2(TRUE)
con = gzcon(url('http://www.systematicportfolio.com/sit.gz', 'rb'))
source(con)
close(con)
#*****************************************************************
# Load historical data
#******************************************************************

tickers = spl('SPY,TLT')

data <- new.env()
getSymbols(tickers, src = 'yahoo', from = '1980-01-01', env = data, auto.assign = T)
for(i in ls(data)) data[[i]] = adjustOHLC(data[[i]], use.Adjusted=T)
bt.prep(data, align='remove.na', dates='2005::')

#*****************************************************************
# Setup
#******************************************************************
lookback.len = 60

prices = data\$prices

models = list()

#*****************************************************************
# Simple Momentum
#******************************************************************
momentum = prices / mlag(prices, lookback.len)
data\$weight[] = NA
data\$weight\$SPY[] = momentum\$SPY > momentum\$TLT
data\$weight\$TLT[] = momentum\$SPY <= momentum\$TLT
models\$Simple  = bt.run.share(data, clean.signal=T)
```

The Simple Momentum strategy invests into SPY if SPY’s momentum if greater than TLT’s momentum, and invests into TLT otherwise.

```	#*****************************************************************
# Probabilistic Momentum
#******************************************************************
confidence.level = 60/100
ret = prices / mlag(prices) - 1

ir = sqrt(lookback.len) * runMean(ret\$SPY - ret\$TLT, lookback.len) / runSD(ret\$SPY - ret\$TLT, lookback.len)
momentum.p = pt(ir, lookback.len - 1)

data\$weight[] = NA
data\$weight\$SPY[] = iif(cross.up(momentum.p, confidence.level), 1, iif(cross.dn(momentum.p, (1 - confidence.level)), 0,NA))
data\$weight\$TLT[] = iif(cross.dn(momentum.p, (1 - confidence.level)), 1, iif(cross.up(momentum.p, confidence.level), 0,NA))
models\$Probabilistic  = bt.run.share(data, clean.signal=T)
```

The Probabilistic Momentum strategy is using Probabilistic Momentum measure and Confidence Level to decide on allocation. Strategy invests into SPY if SPY vs TLT Probabilistic Momentum is above Confidence Level and invests into TLT is SPY vs TLT Probabilistic Momentum is below 1 – Confidence Level.

To make Strategy a bit more attractive, I added a version that can leverage SPY allocation by 50%

```	#*****************************************************************
# Probabilistic Momentum + SPY Leverage
#******************************************************************
data\$weight[] = NA
data\$weight\$SPY[] = iif(cross.up(momentum.p, confidence.level), 1, iif(cross.up(momentum.p, (1 - confidence.level)), 0,NA))
data\$weight\$TLT[] = iif(cross.dn(momentum.p, (1 - confidence.level)), 1, iif(cross.up(momentum.p, confidence.level), 0,NA))
models\$Probabilistic.Leverage = bt.run.share(data, clean.signal=T)

#*****************************************************************
# Create Report
#******************************************************************
strategy.performance.snapshoot(models, T)
```

The back-test results look very similar to the ones reported in the Are Simple Momentum Strategies Too Dumb? Introducing Probabilistic Momentum post.

However, I was not able to exactly reproduce the transition plots. Looks like my interpretation is producing more whipsaw when desired.

```	#*****************************************************************
# Visualize Signal
#******************************************************************
cols = spl('steelblue1,steelblue')
prices = scale.one(data\$prices)

layout(1:3)

plota(prices\$SPY, type='l', ylim=range(prices), plotX=F, col=cols[1], lwd=2)
plota.lines(prices\$TLT, type='l', plotX=F, col=cols[2], lwd=2)
plota.legend('SPY,TLT',cols,as.list(prices))

highlight = models\$Probabilistic\$weight\$SPY > 0
plota.control\$col.x.highlight = iif(highlight, cols[1], cols[2])
plota(models\$Probabilistic\$equity, type='l', plotX=F, x.highlight = highlight | T)
plota.legend('Probabilistic,SPY,TLT',c('black',cols))

highlight = models\$Simple\$weight\$SPY > 0
plota.control\$col.x.highlight = iif(highlight, cols[1], cols[2])
plota(models\$Simple\$equity, type='l', plotX=T, x.highlight = highlight | T)
plota.legend('Simple,SPY,TLT',c('black',cols))
```

David thank you very much for sharing your great ideas. I would encourage readers to play with this strategy and report back.

To view the complete source code for this example, please have a look at the bt.probabilistic.momentum.test() function in bt.test.r at github.

To leave a comment for the author, please follow the link and comment on their blog: Systematic Investor » R.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...