Here you will find daily news and tutorials about R, contributed by over 750 bloggers.
There are many ways to follow us - By e-mail:On Facebook: If you are an R blogger yourself you are invited to add your own R content feed to this site (Non-English R bloggers should add themselves- here)

Monte Carlo methods have been the dominant form of approximate inference for Bayesian statistics over the last couple of decades. Monte Carlo methods are interesting as a technical topic of research in themselves, as well as enjoying widespread practical use. In a diverse number of application areas Monte Carlo methods have enabled Bayesian inference over classes of statistical models which previously would have been infeasible. Despite this broad and sustained attention, it is often still far from clear how best to set up a Monte Carlo method for a given problem, how to diagnose if it is working well, and how to improve under-performing methods. The impact of these issues is even more pronounced with new emerging applications.

What does the workshop address and accomplish?

Identifying features of applications of Monte Carlo methods: This workshop is aimed equally at practitioners and core Monte Carlo researchers. For practitioners we hope to identify what properties of applications are important for selecting, running and checking a Monte Carlo algorithm. Monte Carlo methods are applied to a broad variety of problems. The workshop aims to identify and explore what properties of these disparate areas are important to think about when applying Monte Carlo methods.