More models, more features: what’s new in ‘parameters’ 0.2.0

September 29, 2019
By

[This article was first published on R on easystats, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

The easystats project continues to grow, expanding its capabilities and features, and the parameters package 0.2.0 update is now on CRAN.

The primary goal of this package is to provide utilities for processing the parameters of various statistical models. It is useful for end-users as well as developers, as it is a lightweight and open-developed package.

The main function, model_parameters(), can be seen as an alternative to broom::tidy(). However, the package also include many more useful features, some of which are described in our improved documentation:

Improved Support

Besides stabilizing and improving the functions for the most popular models (glm(), glmer(), stan_glm(), psych and lavaan…), the functions p_value(), ci(), standard_error(), standardize() and most importantly model_parameters() now support many more model objects, including mixed models from packages nlme, glmmTMB or GLMMadaptive, zero-inflated models from package pscl, other regression types from packages gam or mgcv, fixed effects regression models from panelr, lfe, feisr or plm, and structural models from FactoMineR.

Improved Printing

For models with special components, in particular zero-inflated models, model_parameters() separates these components for a clearer output.

## # Conditional component
## 
## Parameter   | Coefficient |   SE |         95% CI |     z |      p
## ------------------------------------------------------------------
## (Intercept) |       -0.36 | 0.28 | [-0.90,  0.18] | -1.30 | > .1  
## spp (PR)    |       -1.27 | 0.24 | [-1.74, -0.80] | -5.27 | < .001
## spp (DM)    |        0.27 | 0.14 | [ 0.00,  0.54] |  1.95 | 0.05  
## spp (EC-A)  |       -0.57 | 0.21 | [-0.97, -0.16] | -2.75 | < .01 
## spp (EC-L)  |        0.67 | 0.13 | [ 0.41,  0.92] |  5.20 | < .001
## spp (DES-L) |        0.63 | 0.13 | [ 0.38,  0.87] |  4.96 | < .001
## spp (DF)    |        0.12 | 0.15 | [-0.17,  0.40] |  0.78 | > .1  
## mined (no)  |        1.27 | 0.27 | [ 0.74,  1.80] |  4.72 | < .001
## 
## # Zero-Inflated component
## 
## Parameter   | Coefficient |   SE |         95% CI |     z |      p
## ------------------------------------------------------------------
## (Intercept) |        0.79 | 0.27 | [ 0.26,  1.32] |  2.90 | < .01 
## mined (no)  |       -1.84 | 0.31 | [-2.46, -1.23] | -5.87 | < .001

Join the team

There is still room for improvement, and some new exciting features are already planned. Feel free to let us know how we could further improve this package!

Note that easystats is a new project in active development, looking for contributors and supporters. Thus, do not hesitate to contact one of us if you want to get involved 🙂

  • Check out our other blog posts here!

To leave a comment for the author, please follow the link and comment on their blog: R on easystats.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Search R-bloggers

Sponsors

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)