Massively parallel database for analytics

July 22, 2009
By

[This article was first published on CYBAEA Data and Analysis, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

This is by far the best description of why traditional parallel databases (like Teradata, Greenplum et al.) is a evolutionary dead end. But much more than a theoretical discussion, they have built a solution which they call HadoopDB. It is based on Hadoop, PostgreSQL, and Hive and is completely Open Source. Alternative, column-based, backends to PostgreSQL are being implemented now. Read: Announcing release of HadoopDB.

See also:

To leave a comment for the author, please follow the link and comment on their blog: CYBAEA Data and Analysis.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Search R-bloggers

Sponsors

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)