Lies, Damn Lies, “Data Journalism” and Charts That Don’t Start at 0

January 28, 2014
By

(This article was first published on rud.is » R, and kindly contributed to R-bloggers)

This tweet by @moorehn (who usually is a superb economic journalist) really bugged me:

I grabbed the raw data from EPI: (http://www.epi.org/files/2012/data-swa/jobs-data/Employment%20to%20population%20ratio%20(EPOPs).xls) and properly started the graph at 0 for the y-axis and also broke out men & women (since the Excel spreadsheet had the data). It’s a really different picture:

empToPop

I’m not saying employment is great right now, but it’s nowhere near a “ski jump”. So much for the state of data journalism at the start of 2014.

Here’s the hastily crafted R-code:

library(ggplot2)
library(ggthemes)
library(reshape2)
 
a <- read.csv("empvyear.csv")
b <- melt(a, id.vars="Year")
 
gg <- ggplot(data=b, aes(x=Year, y=value, group=variable))
gg <- gg + geom_line(aes(color=variable))
gg <- gg + ylim(0, 100)
gg <- gg + theme_economist()
gg <- gg + labs(x="Year", y="Employment as share of population (%)", 
                title="Employment-to-population ratio, age 25–54, 1975–2011")
gg <- gg + theme(legend.title = element_blank())
gg

And, here’s the data extracted from the Excel file:

Year,Men,Women
1975,89.0,51.0
1976,89.5,52.9
1977,90.1,54.8
1978,91.0,57.3
1979,91.1,59.0
1980,89.4,60.1
1981,89.0,61.2
1982,86.5,61.2
1983,86.1,62.0
1984,88.4,63.9
1985,88.7,65.3
1986,88.5,66.6
1987,89.0,68.2
1988,89.5,69.3
1989,89.9,70.4
1990,89.1,70.6
1991,87.5,70.1
1992,86.8,70.1
1993,87.0,70.4
1994,87.2,71.5
1995,87.6,72.2
1996,87.9,72.8
1997,88.4,73.5
1998,88.8,73.6
1999,89.0,74.1
2000,89.0,74.2
2001,87.9,73.4
2002,86.6,72.3
2003,85.9,72.0
2004,86.3,71.8
2005,86.9,72.0
2006,87.3,72.5
2007,87.5,72.5
2008,86.0,72.3
2009,81.5,70.2
2010,81,69.3
2011,81.4,69

To leave a comment for the author, please follow the link and comment on their blog: rud.is » R.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Sponsors

Mango solutions



plotly webpage

dominolab webpage



Zero Inflated Models and Generalized Linear Mixed Models with R

Quantide: statistical consulting and training

datasociety

http://www.eoda.de





ODSC

ODSC

CRC R books series





Six Sigma Online Training









Contact us if you wish to help support R-bloggers, and place your banner here.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)