Le Monde puzzle [#909]

[This article was first published on Xi'an's Og » R, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Another of those “drop-a-digit” Le Monde mathematical puzzle:

Find all integers n with 3 or 4 digits an single interior zero digit, such that removing that zero digit produces a divider of x.

As in puzzle #904, I made use of the digin R function:

digin=function(n){
  as.numeric(strsplit(as.character(n),"")[[1]])}

and simply checked all integers up to 10⁶:

plura=divid=NULL
for (i in 101:10^6){
 dive=rev(digin(i))
 if ((min(dive[1],rev(dive)[1])>0)&
    (sum((dive[-c(1,length(dive))]==0))==1)){
   dive=dive[dive>0]
   dive=sum(dive*10^(0:(length(dive)-1)))
 if (i==((i%/%dive)*dive)){
   plura=c(plura,i)
   divid=c(divid,dive)}}}

which leads to the output

> plura
1] 105 108 405 2025 6075 10125 30375 50625 70875
> plura/divid
[1] 7 6 9 9 9 9 9 9 9

leading to the conclusion there is no solution beyond 70875. (Allowing for more than a single zero within the inner digits sees many more solutions.)

Filed under: Books, Kids, R Tagged: integers, Le Monde, mathematical puzzle

To leave a comment for the author, please follow the link and comment on their blog: Xi'an's Og » R.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)