Le Monde puzzle [#738]

September 1, 2011

(This article was first published on Xi'an's Og » R, and kindly contributed to R-bloggers)

The Friday puzzle in Le Monde this week is about “friendly perfect squares”, namely perfect squares x2>10 and y2>10 with the same number of digits and such that, when drifting all digits of x2 by the same value a (modulo 10), one recovers y2. For instance, 121 is “friend” with 676. Here is my R code:


  for (i in 0:trunc(log(x,10))){



for (t in 2:6){

which returns

[1] 121 676
[1] 1156 4489
[1] 2025 3136
[1] 13225 24336
[1] 111556 444889

namely the pairs (121,676), (1156,4489), (2025,3136), (13225,24336), and (111556,444889) as the solutions. The strange line of R code

    if (is.matrix(dive))
       dive=lapply(seq_len(ncol(dive)), function(i) dive[,i])

is due to the fact that, when the above result is a matrix, turning it into a list means each entry of the matrix is an entry of the list. After trying to solve the problem on my own for a long while (!), I found the above trick on stackoverflow. (As usual, the puzzle is used as an exercise in [basic] R programming. There always exists a neat mathematical solution!)

Filed under: R Tagged: arithmetics, Le Monde, list, mathematical puzzle, matrix, R

To leave a comment for the author, please follow the link and comment on their blog: Xi'an's Og » R.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Tags: , , , , ,

Comments are closed.

Search R-bloggers


Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)