**bayesianbiologist » Rstats**, and kindly contributed to R-bloggers)

I recently posted the slides from a guest lecture that I gave on Bayesian methods for biologists/ecologist. In an effort to promote active learning, the class was not a straight forward lecture, but rather a combination of informational input from me and opportunities for students to engage with the concepts via activities and discussion of demonstrations. These active components were designed with the goal of promoting students’ *construction* of knowledge, as opposed to a passive transfer from teacher to learner.

In order to bring the online reader into closer allignment with the experience of attending the class, I have decided to provide the additional materials that I used to promote active learning.

**1) Monte-Carlo activity:**

In pairs, students are provided with a random number sheet and a circle plot handout:

One student is the random number generator, the other is the plotter. After students plot a few points, we collect all the data and walk through a discussion of why this works. We then scale up and take a look at the same experiment using a computer simulation to see how our estimate converges toward the correct value.

**2) Metropolis-Hastings in action:**

In this demonstration, we walk through the steps of the MH algorithm visually.

Discussion is then facilitated regarding the choice of proposal distribution, autocorrelation, and convergence diagnosis around this demonstration.

I hope that you find this helpful. If you are teaching this topic in your class, feel free to borrow, and improve upon, these materials. If you do, drop me a note and let me know how it went!

**leave a comment**for the author, please follow the link and comment on their blog:

**bayesianbiologist » Rstats**.

R-bloggers.com offers

**daily e-mail updates**about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...