HH Data Science Meetup slides: Explaining complex machine learning models with LIME

April 17, 2018
By

[This article was first published on Shirin's playgRound, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

On April 12th, 2018 I gave a talk about Explaining complex machine learning models with LIME at the Hamburg Data Science Meetup – so if you’re intersted: the slides can be found here: https://www.slideshare.net/ShirinGlander/hh-data-science-meetup-explaining-complex-machine-learning-models-with-lime-94218890

Traditional machine learning workflows focus heavily on model training and optimization; the best model is usually chosen via performance measures like accuracy or error and we tend to assume that a model is good enough for deployment if it passes certain thresholds of these performance criteria. Why a model makes the predictions it makes, however, is generally neglected. But being able to understand and interpret such models can be immensely important for improving model quality, increasing trust and transparency and for reducing bias. Because complex machine learning models are essentially black boxes and too complicated to understand, we need to use approximations to get a better sense of how they work. One such approach is LIME, which stands for Local Interpretable Model-agnostic Explanations and is a tool that helps understand and explain the decisions made by complex machine learning models.

HH Data Science Meetup: Explaining complex machine learning models with LIME from Shirin Glander

– slide deck was produced with beautiful.ai

To leave a comment for the author, please follow the link and comment on their blog: Shirin's playgRound.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Search R-bloggers

Sponsors

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)