Getting SASsy

April 29, 2012

(This article was first published on Civil Statistician » R, and kindly contributed to R-bloggers)

Although I am most familiar with R for statistical analysis and programming, I also use a fair amount of SAS at work.

I found it a huge transition at first, but one thing that helped make SAS “click” for me is that it was designed around those (now-ancient) computers that used punch cards. So the DATA step processes one observation at a time, as if you were feeding it punch cards one after another, and never loads the whole dataset into memory at once. I think this is also why many SAS procedures require you to sort your dataset first. It makes some things awkward to do, and often it takes more code than the equivalent in R, but on the other hand it means you can process huge datasets without worrying about whether they will fit into memory. (Well… memory size should be a non-issue for the DATA step, but not for all procedures. We’ve run into serious memory issues on large datasets when using PROC MIXED and PROC MCMC, so using SAS does not guarantee that you never have to fear large data.)

The Little SAS Book (by Delwiche and Slaughter) and Learning SAS by Example (by Cody) are two good resources for learning SAS. If you’re able to take a class directly from the SAS Institute, they tend to be taught well, and you get a book of class notes with a very handy cheat sheet.

To leave a comment for the author, please follow the link and comment on their blog: Civil Statistician » R. offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Tags: ,

Comments are closed.


Mango solutions

plotly webpage

dominolab webpage

Zero Inflated Models and Generalized Linear Mixed Models with R

Quantide: statistical consulting and training




CRC R books series

Six Sigma Online Training

Contact us if you wish to help support R-bloggers, and place your banner here.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)