# Fit and Visualize A MARS Model

October 7, 2012
By

(This article was first published on Yet Another Blog in Statistical Computing » S+/R, and kindly contributed to R-bloggers)

```#################################################
## FIT A MULTIVARIATE ADAPTIVE REGRESSION      ##
## SPLINES MODEL (MARS) USING MDA PACKAGE      ##
## DEVELOPED BY HASTIE AND TIBSHIRANI          ##
#################################################

# LOAD LIBRARIES AND DATA
library(MASS);
library(mda);
data(Boston);

# FIT AN ADDITIVE MARS MODEL
mars.fit <- mars(Boston[, -14], Boston[14], degree = 1, prune = TRUE, forward.step = TRUE)

# SHOW CUT POINTS OF MARS
cuts <- mars.fit\$cuts[mars.fit\$selected.terms, ];
dimnames(cuts) <- list(NULL, names(Boston)[-14]);
print(cuts);

factor <- mars.fit\$factor[mars.fit\$selected.terms, ];
dimnames(factor) <- list(NULL, names(Boston)[-14]);
print(factor);

# EXAMINE THE FITTED FUNCTION BETWEEN EACH IV AND DV
par(mfrow = c(3, 5), mar=c(2, 2, 2, 2), pty="s")
for (i in 1:13)
{
xp <- matrix(sapply(Boston[1:13], mean), nrow(Boston), ncol(Boston) - 1, byrow = TRUE);
xr <- sapply(Boston, range);
xp[, i] <- seq(xr[1, i], xr[2, i], len=nrow(Boston));
xf <- predict(mars.fit, xp);
plot(xp[, i], xf, xlab = names(Boston)[i], ylab = "", type = "l");
}
```

To leave a comment for the author, please follow the link and comment on their blog: Yet Another Blog in Statistical Computing » S+/R.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

# Never miss an update! Subscribe to R-bloggers to receive e-mails with the latest R posts.(You will not see this message again.)

Click here to close (This popup will not appear again)