# Euler Problem 29: Distinct Powers

July 5, 2017
By

(This article was first published on The Devil is in the Data, and kindly contributed to R-bloggers)

Euler Problem 29 is another permutation problem that is quite easy to solve using brute force. The MathBlog site by Kristian Edlund has a nice solution using only pen and paper.

Raising number to a power can have interesting results. The video below explains why this pandigital formula approximates $e$ to billions of decimals:

$(1 + 9^{-4^{6 \times 7}})^{3^{2^{85}}} \approx e$

## Euler Problem 29 Definition

Consider all integer combinations of: $a^b$ for $2 \leq a \leq 5$ and $\leq b \leq 5$.

$2^2=4, \quad 2^3 = 8,\quad 2^4 = 16,\quad 2^5 = 32$

$3^2 = 9,\quad 3^3 = 27,\quad 3^4 = 81,\quad 3^5 = 243$

$4^2 = 16,\quad 4^3 = 64,\quad 4^4 = 256, \quad 4^5 = 1024$

$5^2 = 25,\quad 5^3 = 125,\quad 5^4 = 625,\quad 5^5 = 3125$

If they are then placed in numerical order, with any repeats removed, we get the following sequence of 15 distinct terms:

$4, \ 8, \ 9, \ 16, \ 25, \ 27, \ 32, \ 64, \ 81, \ 125, \ 243, \ 256,\ 625, \ 1024, \ 3125$

How many distinct terms are in the sequence generated by $a^b$ for $2 \leq a \leq 100$ and $2 \leq b \leq 100$?

## Brute Force Solution

This code simply calculates all powers from $2^2$ to $2^{1000}$ and determines the number of unique values. Since we are only interested in their uniqueness and not the precise value, there is no need to use Multiple Precision Arithmetic.

# Initialisation
target <- 100
terms <- vector()
i <- 1
# Loop through values of a and b and store powers in vector
for (a in 2:target) {
for (b in 2:target) {
terms[i] <- a^b
i <- i + 1
}
}
# Determine the number of distinct powers


The post Euler Problem 29: Distinct Powers appeared first on The Devil is in the Data.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...