Estimating Variance as a Function of Treatment Rank Class

March 24, 2014

(This article was first published on Econometrics by Simulation, and kindly contributed to R-bloggers)

Imagine that we have a treatment that we give to five different groups of individuals.  Each individual has a variable response which as a unique mean and variance based on the treatment.  We do not know how the means will change but we believe the variance of responses will expand depending upon what level of treatment the individual gets.  We would like to expressly model both the differences in means and that of the variances.

This code was formulated in response to a question posted on CrossValidated.

We want to solve
$$    \max_{\bf {\hat\beta,\hat\gamma}} (\sum_{i=1}(ln(D(x_i, \hat\mu, \hat\gamma_0+\hat\gamma_1 rank))) $$

# Specify how many individuals are in each of our groups <- 500
# Simulate our data
grp1 <- data.frame(values=rnorm(,5,1), grp=1)
grp2 <- data.frame(values=rnorm(,3,2), grp=2)
grp3 <- data.frame(values=rnorm(,6,3), grp=3)
grp4 <- data.frame(values=rnorm(,5,4), grp=4)
grp5 <- data.frame(values=rnorm(,1,5), grp=5)
# Group our data into a single object
mydata <- rbind(grp1,grp2,grp3,grp4,grp5)
# Speficy the function to maximize (minimize)
lnp <- function(gamma, x, rank)
# I include a negative here because the default option with optim is minimize
ans <- optim(c(
# Specify initial values for parameters to be estimated
beta1=1,beta2=1,beta3=1,beta4=1, beta5=1,
# Specify the function to minimize (maximize)
# Input dependent variable as x and the explanatory variable as rank
x=mydata$values, rank=mydata$grp,
# Be sure to inlcude the hessian in the return for
# calculating standard errors
# The standard erros can be estimated using the hessian
stand.error <- sqrt(diag(solve(ans$hessian)))
# This will create a nice table of results
pvalue=1-pt(ans$par/stand.error, nrow(mydata)-length(ans$par)),

          par.est stand.error      tstat    pvalue    CILower     CIUpper
beta1 4.9894067 0.04038367 123.550112 0.0000000 4.9229567 5.05585658
beta2 2.0009055 0.10955198 18.264440 0.0000000 1.8206415 2.18116942
beta3 3.7640531 0.19407912 19.394427 0.0000000 3.4447027 4.08340355
beta4 6.4818562 0.23879420 27.144111 0.0000000 6.0889287 6.87478375
beta5 -0.5547626 0.29730735 -1.865957 0.9689176 -1.0439715 -0.06555377
gamma1 -0.4849449 0.05684407 -8.531142 1.0000000 -0.5784798 -0.39140993
gamma2 1.3867000 0.04520519 30.675682 0.0000000 1.3123164 1.46108352

To leave a comment for the author, please follow the link and comment on their blog: Econometrics by Simulation. offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.


Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)