Efficient MCMC with Caching

March 2, 2019
By

(This article was first published on R – Stable Markets, and kindly contributed to R-bloggers)

This post is part of a running series on Bayesian MCMC tutorials. For updates, follow @StableMarkets. Metropolis Review Metropolis-Hastings is an MCMC algorithm for drawing samples from a distribution known up to a constant of proportionality, $latex p(\theta | y) \propto p(y|\theta)p(\theta)$. Very briefly, the algorithm works by starting with some initial draw $latex \theta^{(0)}$ then running … Continue reading Efficient MCMC with Caching

To leave a comment for the author, please follow the link and comment on their blog: R – Stable Markets.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Search R-bloggers

Sponsors

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)