Demonstrating the Power of F Test with gWidgets

April 2, 2010
By

(This article was first published on Statistics, R, Graphics and Fun » R Language, and kindly contributed to R-bloggers)

We know the real distribution of the F statistic in linear models — it is a non-central F distribution. Under H0, we have a central F distribution. Given 1 – α, we can compute the probability of (correctly) rejecting H0. I created a simple demo to illustrate how the power changes as other parameters vary, e.g. the degrees of freedoms, the non-central parameter and alpha. Here is the video:

The Power of F Test

And for those who might be interested, here is the code (you need to install the gWidgets package first and I recommend the RGtk2 interface). Have fun:

## install.packages('gWidgetsRGtk2') first if not installed
if (!require("gWidgetsRGtk2")) install.packages("gWidgetsRGtk2")
if (!require("cairoDevice")) install.packages("cairoDevice")
library(gWidgetsRGtk2)
options(guiToolkit = "RGtk2")
tbl = glayout(container = gwindow("Power of the F Test"),
    spacing = 0)
tbl[1, 1:4, anchor = c(0, 0), expand = TRUE] = g.f = ggraphics(container = tbl,
    expand = TRUE, ps = 11)
tbl[2, 1, anchor = c(1, 0)] = "numerator df"
tbl[2, 2, anchor = c(0, 0), expand = TRUE] = g.dfn = gslider(from = 1,
    to = 50, value = 3, container = tbl, handler = function(h,
        ...) {
        p.Ftest(dfn = svalue(h$obj))
    })
tbl[2, 3, anchor = c(1, 0)] = "denominator df"
tbl[2, 4, anchor = c(0, 0), expand = TRUE] = g.dfd = gslider(from = 1,
    to = 50, value = 20, container = tbl, handler = function(h,
        ...) {
        p.Ftest(dfd = svalue(h$obj))
    })
tbl[3, 1, anchor = c(1, 0)] = "delta^2"
tbl[3, 2, anchor = c(0, 0), expand = TRUE] = g.ncp = gslider(from = 0,
    to = 100, value = 10, container = tbl, handler = function(h,
        ...) {
        p.Ftest(ncp = svalue(h$obj))
    })
tbl[3, 3, anchor = c(1, 0)] = "alpha"
tbl[3, 4, anchor = c(0, 0), expand = TRUE] = g.alpha = gslider(from = 0,
    to = 1, by = 0.01, value = 0.05, container = tbl, handler = function(h,
        ...) {
        p.Ftest(alpha = svalue(h$obj))
    })
tbl[4, 1, anchor = c(1, 0)] = "x range"
tbl[4, 2:4, anchor = c(0, 0), expand = TRUE] = g.xr = gslider(from = 1,
    to = 50, value = 15, container = tbl, handler = function(h,
        ...) {
        p.Ftest(xr = svalue(h$obj))
    })
## draw the graph
p.Ftest = function(dfn = svalue(g.dfn), dfd = svalue(g.dfd),
    ncp = svalue(g.ncp), alpha = svalue(g.alpha), xr = svalue(g.xr)) {
    x = seq(0.001, xr, length.out = 300)
    yc = df(x, dfn, dfd)
    yn = df(x, dfn, dfd, ncp = ncp)
    par(mar = c(4.5, 4, 1, 0.05))
    plot(x, yc, type = "n", ylab = "Density", ylim = c(0, max(yc,
        yn)))
    xq = qf(1 - alpha, dfn, dfd)
    polygon(c(xq, x[x >= xq], xr), c(0, yn[x > xq], 0), col = "gray",
        border = NA)
    lines(x, yc, lty = 1)
    lines(x, yn, lty = 2)
    legend("topright", c(as.expression(substitute(F[list(df1,
        df2)] ~ " density", list(df1 = dfn, df2 = dfd))), as.expression(substitute(F[list(df1,
        df2)](ncp) ~ " density", list(df1 = dfn, df2 = dfd, ncp = ncp))),
        as.expression(substitute("Power = " ~ p, list(p = round(1 -
            pf(xq, dfn, dfd, ncp = ncp), 4))))), lty = c(1:2,
        NA), fill = c(NA, NA, "gray"), border = NA, bty = "n")
    return(1 - pf(xq, dfn, dfd, ncp = ncp))
}
p.Ftest()

Related Posts

To leave a comment for the author, please follow the link and comment on their blog: Statistics, R, Graphics and Fun » R Language.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Tags: , , , , , , ,

Comments are closed.

Sponsors

Mango solutions



plotly webpage

dominolab webpage



Zero Inflated Models and Generalized Linear Mixed Models with R

Quantide: statistical consulting and training

datasociety

http://www.eoda.de





ODSC

ODSC

CRC R books series





Six Sigma Online Training









Contact us if you wish to help support R-bloggers, and place your banner here.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)