Data Science Job in 90 days – Book Review

May 25, 2019
By

[This article was first published on R programming – Journey of Analytics, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Are you an R-programmer or Datascience enthusiast looking for a break in the datascience field? If so, my latest book “Data Science Jobs – land a lucrative job in 90 days” will help you find one quickly.

[Author’s note – The ebook is FREE ONLY until midnight this Sunday (May 26th). So hurry and grab your copy today.]

As an analytics manager I get countless requests for job search advice, resume feedback and brilliant students who are somehow unable to find a job in this exciting field. There are tons of books on the internet on how to learn the skills to become a data scientist/ data analyst, but none to prepare folks for the frustrating job search.

I repeat the same advice to all these requests and am delighted to say that a dozen people were successfully able to land their dream roles with companies like LinkedIn, Walmart Labs, Comcast and others. These same strategies are now available on Kindle[ Amazon book link here.]

Target Reader Audience

  • Students with solid knowledge of programming in R or Python looking to find a role as a data analyst/scientist or BI developer. A background in computer science or math will help, but not necessary.
  • International student on F-1/OPT visa looking for employment after a graduate degree in analytics.
  • Employed professionals looking to pivot their career, or seeking better pay/manager/location.

Book Summary

The book aims to provide you with creative techniques to get your resume directly in the hands of hiring managers, instead of relying hopelessly on online application systems that rarely produce a response. Don’t be fooled by the length of the book – it is deliberately kept short so that jobseekers can read through quicky and apply these principles in their job search.

The book chapters provide detailed guidelines on these broad themes:

  • Personal Branding – Create an online profile that helps you bubble up when hiring managers look for candidates. Make the jobs come to you! Tips to tweak your resume to achieve the same. For project inspiration, look at learning communities like R-bloggers, Kaggle, etc.
  • LinkedIn – Secret ways to leverage LinkedIn to engage hiring managers. Do NOT simply accept connections or indiscriminately apply to every open job. How to use LinkedIn to improve personal SEO!
  • Strategic Networking – How to actively reach out to the decision-makers who can hire you!
  • Niche sites – Hiring managers understand that the best venue to hire talent are the datascience communities where folks go to learn. The book lists these niches job boards on sites like R-bloggers, Kaggle.com and many others.
  • Upwork – despite popular opinion (about the site’s ineffectiveness), this site is a quick way to earn money and position yourself for your dream role.
  • And many more…

In conclusion, this book is a condensed guide with practical strategies to make the job search process less stressful, and help readers quickly get hired. So get the ebook on Amazon, and get started on a lucrative career!

To leave a comment for the author, please follow the link and comment on their blog: R programming – Journey of Analytics.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Search R-bloggers

Sponsors

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)