conapomx data package

January 15, 2018
By

(This article was first published on En El Margen - R-English, and kindly contributed to R-bloggers)

I have created a new data package for R to help users obtain national population statistics of Mexico.

The conapomx package contains the mxpopulation data set, which is a tidy data.frame containing population estimates from the CONAPO (National Population Commission) official agency. The estimates are divided by age groups, gender, municipality and year.

To install, just call CRAN (or github if you are reading this before it is accepted).

install.packages("conapomx") 
# or... 
library(devtools)
install_github("eflores89/conapomx")

# explore the dataset
head(mxpopulation)
y st id_st mun id_mun geoid gender age population
2010 Aguascalientes 1 Aguascalientes 1 1001 0 0-14 124263.71
2010 Aguascalientes 1 Aguascalientes 1 1001 0 15-29 106695.14
2010 Aguascalientes 1 Aguascalientes 1 1001 0 30-44 81088.65
2010 Aguascalientes 1 Aguascalientes 1 1001 0 45-64 60379.29
2010 Aguascalientes 1 Aguascalientes 1 1001 0 65+ 17679.26
2010 Aguascalientes 1 Aguascalientes 1 1001 1 0-14 119535.77

Here is the data for 2018, just out of curiosity:

library(dplyr)

mxpopulation %>% 
  filter(y == "2018") %>%
  group_by(st) %>% 
  summarize("Population" = sum(population))
st Population
Aguascalientes 1337792.5
Baja California 3633772.2
Baja California Sur 832827.2
Campeche 948459.3
Chiapas 5445232.7
Chihuahua 3816865.4
Coahuila 3063662.5
Colima 759686.5
Distrito Federal 8788140.6
Durango 1815965.6
Guanajuato 5952086.5
Guerrero 3625040.0
Hidalgo 2980532.2
Jalisco 8197483.1
Mexico 17604619.1
Michoacan 4687210.5
Morelos 1987595.8
Nayarit 1290518.8
Nuevo Leon 5300618.6
Oaxaca 4084674.0
Puebla 6371380.8
Queretaro 2091823.2
Quintana Roo 1709478.7
San Luis Potosi 2824976.0
Sinaloa 3059321.7
Sonora 3050472.7
Tabasco 2454294.5
Tamaulipas 3661161.7
Tlaxcala 1330142.6
Veracruz 8220321.9
Yucatan 2199617.6
Zacatecas 1612014.2

Hopefully this helps to avoid the notoriously bad datos.gob webpage! Happy data wrangling!

To leave a comment for the author, please follow the link and comment on their blog: En El Margen - R-English.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Search R-bloggers


Sponsors

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)