Compute/Visualize Drive Space Consumption of Your Installed R Packages

April 1, 2018
By

(This article was first published on R – rud.is, and kindly contributed to R-bloggers)

The fs package makes it super quick and easy to find out just how much “package hoarding” you’ve been doing:

library(fs)
library(ggalt) # devtools::install_github("hrbrmstr/ggalt")
library(igraph) 
library(ggraph) # devtools::install_github("thomasp85/igraph")
library(hrbrthemes) # devtools::install_github("hrbrmstr/hrbrthemes")
library(tidyverse)

installed.packages() %>%
  as_data_frame() %>%
  mutate(pkg_dir = sprintf("%s/%s", LibPath, Package)) %>%
  select(pkg_dir) %>%
  mutate(pkg_dir_size = map_dbl(pkg_dir, ~{
    fs::dir_info(.x, all=TRUE, recursive=TRUE) %>%
      summarise(tot_dir_size = sum(size)) %>% 
      pull(tot_dir_size)
  })) %>% 
  summarise(
    total_size_of_all_installed_packages=ggalt::Gb(sum(pkg_dir_size))
  ) %>% 
  unlist()
## total_size_of_all_installed_packages 
##                             "1.6 Gb"

While you can modify the above and peruse the list of packages/directories in tabular format or programmatically, you can also do a bit more work to get a visual overview of package size (click/tap the image for a larger view):

installed.packages() %>%
  as_data_frame() %>%
  mutate(pkg_dir = sprintf("%s/%s", LibPath, Package)) %>%
  mutate(dir_info = map(pkg_dir, fs::dir_info, all=TRUE, recursive=TRUE)) %>% 
  mutate(dir_size = map_dbl(dir_info, ~sum(.x$size))) -> xdf

select(xdf, Package, dir_size) %>% 
  mutate(grp = "ROOT") %>% 
  add_row(grp = "ROOT", Package="ROOT", dir_size=0) %>% 
  select(grp, Package, dir_size) %>% 
  arrange(desc(dir_size)) -> gdf

select(gdf, -grp) %>% 
  mutate(lab = sprintf("%s\n(%s)", Package, ggalt::Mb(dir_size))) %>% 
  mutate(lab = ifelse(dir_size > 1500000, lab, "")) -> vdf

g <- graph_from_data_frame(gdf, vertices=vdf)

ggraph(g, "treemap", weight=dir_size) +
  geom_node_tile(fill="lightslategray", size=0.25) +
  geom_text(
    aes(x, y, label=lab, size=dir_size), 
    color="#cccccc", family=font_ps, lineheight=0.875
  ) +
  scale_x_reverse(expand=c(0,0)) +
  scale_y_continuous(expand=c(0,0)) +
  scale_size_continuous(trans="sqrt", range = c(0.5, 8)) +
  ggraph::theme_graph(base_family = font_ps) +
  theme(legend.position="none")

treemap of package disk consumption

Challenge

Do some wrangling with the above data and turn it into a package “disk explorer” with @timelyportfolio’s d3treeR? package.

To leave a comment for the author, please follow the link and comment on their blog: R – rud.is.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Search R-bloggers

Sponsors

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)