Bullet Charts in R using Plotly

May 15, 2016
By

(This article was first published on R – Modern Data, and kindly contributed to R-bloggers)

This post is inspired by Mike Bostock’s implementation of bullet charts – http://bl.ocks.org/mbostock/4061961

library(plotly)
library(jsonlite)
library(dplyr)

# Read data
df <- fromJSON(txt = url("https://cdn.rawgit.com/plotly/datasets/master/BulletData.json"))

# Convert to conventional format
df <- t(apply(df, 1, function(vec){
  vec <- unlist(vec)
  return(vec)
}))

df <- as.data.frame(df, stringsAsFactors = F)
p <- list()

# Set line widths
innerwidth <- 10
outerwidth <- 25

for(i in 1:nrow(df)){
  p[[i]] <- 
    
    # Ranges3
    plot_ly(df[i,], 
            x = c(0, as.numeric(ranges3)),
            y = c(title, title),
            name = "Range3",
            hoverinfo = "x",
            mode = "lines",
            line = list(color = "#eeeeee", width = outerwidth),
            evaluate = T) %>% 
    
    # Ranges2
    add_trace(x = c(0, as.numeric(ranges2)),
              y = c(title, title),
              hoverinfo = "x",
              mode = "lines",
              line = list(color = "#dddddd", width = outerwidth),
              evaluate = T) %>%
    
    # Ranges1
    add_trace(x = c(0, as.numeric(ranges1)),
              y = c(title, title),
              hoverinfo = "x",
              line = list(color = "#cccccc", width = outerwidth),
              evaluate = T) %>% 
    
    
    # Measure2
    add_trace(x = c(0, as.numeric(measures2)),
              y = c(title, title),
              mode = "lines",
              hoverinfo = "x",
              line = list(color = "#b0c4de", width = innerwidth),
              evaluate = T) %>% 
    
    # Measure1
    add_trace(x = c(0, as.numeric(measures1)),
              y = c(title, title),
              mode = "lines",
              hoverinfo = "x",
              line = list(color = "#4682b4", width = innerwidth),
              evaluate = T) %>% 
    
    # Marker
    add_trace(x = as.numeric(markers),
              y = title,
              mode = "markers",
              hoverinfo = "x",
              marker = list(color = "black", symbol = "diamond-tall", size = 10),
              evaluate = T) %>% 
    
    layout(showlegend = F, 
           xaxis = list(title = "", showgrid = F, zeroline = F, 
                        range = c(-(as.numeric(ranges3)/10), as.numeric(ranges3)),
                        ticklen = 7,
                        tickfont = list(family = "Arial", size = 10),
                        tickcolor = "#cccccc"),
           
           yaxis = list(title = "",
                        showgrid = F, 
                        zeroline = F,
                        showticklabels = F))
}

pp <- subplot(p[[1]], p[[2]], p[[3]], p[[4]], p[[5]],
        nrows = 5, 
        margin = c(0, 0, 0.1, 0))

# Add Y-Axis titles
pp <- layout(pp,
       annotations = list(
         
         list(xref = "paper", yref = "paper", 
              x = 0, y = 0.05, ax = 0, ay = 0, xanchor = "right",
              text = paste0("", df[1,1], "","
", '', df[1,2], ""), align = "right", font = list(family = "arial", size = 15)), list(xref = "paper", yref = "paper", x = 0, y = 0.25, ax = 0, ay = 0, xanchor = "right", text = paste0("", df[2,1], "","
", '', df[2,2], ""), align = "right", font = list(family = "arial", size = 15)), list(xref = "paper", yref = "paper", x = 0, y = 0.45, ax = 0, ay = 0, xanchor = "right", text = paste0("", df[3,1], "","
", '', df[3,2], ""), align = "right", font = list(family = "arial", size = 15)), list(xref = "paper", yref = "paper", x = 0, y = 0.65, ax = 0, ay = 0, xanchor = "right", text = paste0("", df[4,1], "","
", '', df[4,2], ""), align = "right", font = list(family = "arial", size = 15)), list(xref = "paper", yref = "paper", x = 0, y = 0.90, ax = 0, ay = 0, xanchor = "right", text = paste0("", df[5,1], "","
", '', df[5,2], ""), align = "right", font = list(family = "arial", size = 15)))) pp

To leave a comment for the author, please follow the link and comment on their blog: R – Modern Data.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Search R-bloggers


Sponsors

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)