Area under the precision-recall curve

January 17, 2020
By

[This article was first published on modTools, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

The AUC function, in the modEvA package, initially computed only the area under the receiver operating characteristic (ROC) curve. Now, since modEvA version 1.7 (currently available on R-Forge), it also offers the option to compute the precision-recall curve, which may be better for comparing models based on imbalanced data (e.g. for rare species) — see e.g. Sofaer et al. (2019).

Usage example:

library(modEvA)
mod <- rotif.mods$models[["Ktropi"]]
par(mfrow = c(1, 2))
AUC(mod, main = "ROC curve")
AUC(mod, curve = "PR", main = "Precision-recall curve")

References

Sofaer, H.R., Hoeting, J.A. & Jarnevich, C.S. (2019). The area under the precision-recall curve as a performance metric for rare binary events. Methods in Ecology and Evolution, 10: 565-577

To leave a comment for the author, please follow the link and comment on their blog: modTools.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Search R-bloggers

Sponsors

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)