Another Benchmark for Joining Two Data Frames

January 29, 2013

(This article was first published on Yet Another Blog in Statistical Computing » S+/R, and kindly contributed to R-bloggers)

In my post yesterday comparing efficiency in joining two data frames, I overlooked the computing cost used to convert data.frames to data.tables / ff data objects. Today, I did the test again with the consideration of library loading and data conversion. After the replication of 10 times in rbenchmark package, the joining method with data.table is almost 10 times faster than the other in terms of user time. Although ff package is claimed to be able to handle large-size data, its efficiency seems questionable.

n <- 1000000
ldf <- data.frame(id1 = sample(n, n), id2 = sample(n / 100, n, replace = TRUE), x1 = rnorm(n), x2 = runif(n))
rdf <- data.frame(id1 = sample(n, n), id2 = sample(n / 100, n, replace = TRUE), y1 = rnorm(n), y2 = runif(n))

benchmark(replications = 10, order = "user.self",
  merge = merge(ldf, rdf, by = c("id1", "id2")),
  datatable = {
    ldt <- data.table::data.table(ldf, key = c("id1", "id2"))
    rdt <- data.table::data.table(rdf, key = c("id1", "id2"))
    merge(ldt, rdt, by = c("id1", "id2"))
  ff = {
    lff <- ff::as.ffdf(ldf)
    rff <- ff::as.ffdf(rdf)
    merge(lff, rff, by = c("id1", "id2"))
  sqldf = sqldf::sqldf(c("create index ldx on ldf(id1, id2)",
                         "select * from main.ldf inner join rdf on ldf.id1 = rdf.id1 and ldf.id2 = rdf.id2"))

#        test replications elapsed relative user.self sys.self user.child
# 2 datatable           10  17.923    1.000    16.605    1.432          0
# 4     sqldf           10 105.002    5.859   102.294    3.345          0
# 1     merge           10 131.279    7.325   119.139   13.049          0
# 3        ff           10 187.150   10.442   154.670   33.758          0

To leave a comment for the author, please follow the link and comment on their blog: Yet Another Blog in Statistical Computing » S+/R. offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.


Mango solutions

plotly webpage

dominolab webpage

Zero Inflated Models and Generalized Linear Mixed Models with R

Quantide: statistical consulting and training




CRC R books series

Six Sigma Online Training

Contact us if you wish to help support R-bloggers, and place your banner here.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)