Advances in scalable Bayesian computation [day #1]

March 4, 2014

(This article was first published on Xi'an's Og » R, and kindly contributed to R-bloggers)

polyptych painting within the TransCanada Pipeline Pavilion, Banff Centre, Banff, March 21, 2012This was the first day of our workshop Advances in Scalable Bayesian Computation and it sounded like the “main” theme was probabilistic programming, in tune with my book review posted this morning. Indeed, both Vikash Mansinghka and Frank Wood gave talks about this concept, Vikash detailing the specifics of a new programming language called Venture and Frank focussing on his state-space version of the above called Anglican. This is a version of the language Church, developed to handle probabilistic models and inference (hence the joke about Anglican, “a Church of England Venture’! But they could have also added that Frank Wood was also the name of a former archbishop of Melbourne..!) I alas had an involuntary doze during Vikash’s talk, which made it harder for me to assess the fundamentals of those ventures, of how they extended beyond a “mere” new software (and of why I would invest in learning a Lisp-based language!).

The other talks of Day #1 were of a more “classical” nature with Pierre Jacob explaining why non-negative unbiased estimators were impossible to provide in general, a paper I posted about a little while ago, and including an objective Bayes example that I found quite interesting. Then Sumeet Singh (no video) presented a joint work with Nicolas Chopin on the uniform ergodicity of the particle Gibbs sampler, a paper that I should have commented here (except that it appeared just prior to The Accident!), with a nice coupling proof. And Maria Lomeli gave us an introduction to the highly general Poisson-Kingman mixture models as random measures, which encompasses all of the previously studied non-parametric random measures, with an MCMC implementation that included a latent variable representation for the alpha-stable process behind the scene, representation that could be (and maybe is) also useful in parametric analyses of alpha-stable processes.

We also had an open discussion in the afternoon that ended up being quite exciting, with a few of us voicing out some problems or questions about existing methods and others making suggestions or contradictions. We are still a wee bit short of considering a collective paper on MCMC under constraints with coherent cross-validated variational Bayes and loss-based pseudo priors, with applications to basketball data” to appear by the end of the week!

Add to this two visits to the Sally Borden Recreation Centre for morning swimming and evening climbing, and it is no wonder I woke up a bit late this morning! Looking forward Day #2!

Filed under: Books, Mountains, pictures, R, Statistics, University life Tagged: alpha-stable processes, Banff International Research Station for Mathematical Innovation, Bayesian nonparametrics, Canada, Canadian Rockies, objective Bayes, particle Gibbs sampler, probabilistic progamming, unbiasedness, uniform ergodicity

To leave a comment for the author, please follow the link and comment on their blog: Xi'an's Og » R. offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.


Mango solutions

plotly webpage

dominolab webpage

Zero Inflated Models and Generalized Linear Mixed Models with R

Quantide: statistical consulting and training




CRC R books series

Six Sigma Online Training

Contact us if you wish to help support R-bloggers, and place your banner here.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)