Add Dressbarn to the Continued Retailpocalypse

May 21, 2019

(This article was first published on R –, and kindly contributed to R-bloggers)

I’ve talked about the retailpocalypse before and this morning I was greeted with the news about Dressbarn closing all 650 stores as I fired up a browser.

I tweeted some pix and data but not everyone is on Twitter so I’m just posting a blog-blurb here with the code and data links.

Code is below and at

Data is at

Images are in a gallery below the code.

library(worldtilegrid) # install from sh/gl/gh or just remove the theme_enhange_wtg() calls

# this is the dressbarn locations directory page
pg <- read_html("")

# this is the selector to get the main links
html_nodes(pg, "a.Directory-listLink") %>% 
  html_attr("href") -> locs

# No sleep() code (I looked at the web site, saw how many self-requests it makes for all DB
# resources and concluded that link scrapes + full page captures would not be burdensome
# plus they're going out of business)

# basic idea here is to get all the main state location pages
# some states only have one store so the link goes right to that so handle that condition
# for ones with multiple stores get all the links on the state index page
# for links on state index page that have multiple stores in one area,
# grab all those; then, concatenate all the final target store links into one 
# character vector.

keep(locs, ~nchar(.x) == 2) %>% 
  sprintf("", .) %>% # state has multiple listings
    ~read_html(.x) %>% 
      html_nodes("a.Directory-listLink") %>% 
      html_attr("href") %>% 
      sprintf("", .)
  ) %>% 
    keep(locs, ~nchar(.x) > 2) %>% sprintf("", .) # state has one store
  ) %>% 
  flatten_chr() %>% 
    ~stri_count_fixed(.x, "/") == 4, # 4 URL parts == there's another listing page layer
    ~read_html(.x) %>% 
      html_nodes("a.Teaser-titleLink") %>% 
      html_attr("href") %>% 
      stri_replace_first_fixed("../", "") %>% 
      sprintf("", .)
  )  %>% 
  flatten_chr() -> listings

# make a tibble with the HTML source for the final store location pages
# so we don't end up doing multiple retrievals

  listing = listings,
  html_src = map_chr(listings, ~httr::GET(.x) %>% httr::content(as = "text"))
) -> dress_barn

# save off our work in the event we have a (non-R-crashing) issue
tf <- tempfile(fileext = ".rds")
saveRDS(dress_barn, tf) 

# now, get data from the pages
# first, turn all the character vectors into something we can get HTML nodes from
# dressbarn web folks handliy put an "uber" link on each page so we get lon/lat for free in that URL
# they also handily used an 
semantic tag in the proper PostalAddress schema format # so we can get locality and actual address, too mutate( dress_barn, parsed = map(html_src, read_html), uber_link = map_chr( parsed, ~html_nodes(.x, xpath=".//a[contains(@href, 'uber')]") %>% html_attr("href") ), locality = map_chr( parsed, ~html_node(.x, xpath=".//address/meta[@itemprop = 'addressLocality']") %>% html_attr("content") ), address = map_chr( parsed, ~html_node(.x, xpath=".//address/meta[@itemprop = 'streetAddress']") %>% html_attr("content") ), state = stri_match_first_regex( dress_barn$listing, "[[:alpha:]]+)/.*$" )[,2] ) %>% bind_cols( param_get(.$uber_link, c("dropoff%5Blatitude%5D", "dropoff%5Blongitude%5D")) %>% as_tibble() %>% set_names(c("lat", "lon")) %>% mutate_all(as.double) ) -> dress_barn # save off our hard work with the HTML source so we can do more later if need be select(dress_barn, -parsed) %>% saveRDS("~/Data/dressbarn-with-src.rds") # save off something others will want select(dress_barn, -parsed, -html_src, -listing) %>% jsonlite::toJSON() %>% write_lines("~/Data/dressbarn-locations.json.gz") # simple map ggplot(dress_barn, aes(lon, lat)) + geom_jitter(size = 0.25, color = ft_cols$yellow, alpha = 1/2) + coord_map("polyconic") + labs( title = "Locations of U.S. Dressbarn Stores", subtitle = "All 650 locations closing", caption = "Source: Dressbarn HTML store listings;\nData: via @hrbrmstr" ) + theme_ft_rc(grid="") + theme_enhance_wtg() unlink(tf) # cleanup count(dress_barn, state) %>% left_join(tibble(name =, state = tolower( %>% left_join(usmap::statepop, by = c("name"="full")) %>% mutate(per_capita = (n/pop_2015) * 1000000) %>% arrange(desc(per_capita)) %>% select(name, n, per_capita) %>% arrange(desc(per_capita)) %>% complete(name = %>% statebins(state_col = "name", value_col = "per_capita", ) + scale_fill_r7c("Closing\nper-capita") + labs(title = "Dressbarn State per-capita closings") + theme_ipsum_rc(grid="") + theme_enhance_wtg()

Dressbarn closings visualizations

To leave a comment for the author, please follow the link and comment on their blog: R – offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Search R-bloggers


Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)